Що показує мат очікування. Основи теорії ймовірностей

Математичне очікування - це визначення

Мат очікування - цеодне з найважливіших понять у математичній статистиці та теорії ймовірностей, що характеризує розподіл значень або ймовірностейдовільної величини. Зазвичай виражається як середньозважене значення всіх можливих параметрів випадкової величини. Широко застосовується під час проведення технічного аналізу, дослідженні числових рядів, вивченні безперервних та тривалих процесів. Має важливе значення при оцінці ризиків, прогнозуванні цінових показників при торгівлі на фінансових ринках, використовується при розробці стратегій та методів ігрової тактики теорії азартних ігор.

Мат очікування- цесереднє значення випадкової величини, розподіл ймовірностейвипадкової величини у теорії ймовірностей.

Мат очікування - цеміра середнього значення випадкової величини теоретично ймовірності. Мат очікування випадкової величини xпозначається M(x).

Математичне очікування (Population mean) – це

Мат очікування - це

Мат очікування - цетеоретично ймовірності середньозважена величина всіх можливих значень, які може набувати ця випадкова величина.

Мат очікування - цесума творів всіх можливих значень випадкової величини на ймовірність цих значень.

Математичне очікування (Population mean) – це

Мат очікування - цесередня вигода від того чи іншого рішення за умови, що подібне рішення може бути розглянуте в рамках теорії великих чисел та тривалої дистанції.

Мат очікування - цев теорії азартних ігор сума виграшу, яку може заробити чи програти спекулянт, у середньому за кожною ставкою. Мовою азартних спекулянтівце іноді називається «перевагою спекулянта(якщо воно позитивне для спекулянта) або «перевагою казино» (якщо воно негативне для спекулянта).

Математичне очікування (Population mean) – це


Математичне очікування – це розподіл ймовірностей випадкової величини

Математичне очікування, визначення, математичне очікування дискретної та безперервної випадкових величин, вибіркове, умовне маточування, розрахунок, властивості, завдання, оцінка маточіння, дисперсія, функція розподілу, формули, приклади розрахунку

Розгорнути зміст

Згорнути зміст

Математичне очікування - це визначення

Одне з найважливіших понять у математичній статистиці та теорії ймовірностей, що характеризує розподіл значень чи ймовірностей випадкової величини. Зазвичай виражається як середньозважене значення всіх можливих параметрів випадкової величини. Широко застосовується під час проведення технічного аналізу, дослідженні числових рядів, вивченні безперервних та тривалих процесів. Має важливе значення при оцінці ризиків, прогнозуванні цінових показників при торгівлі на фінансових ринках, використовується для розробки стратегій та методів ігрової тактики в теорії азартних ігор.

Математичне очікування – цеСереднє значення випадкової величини, розподіл ймовірностей випадкової величини у теорії ймовірностей.

Математичне очікування – цеміра середнього значення випадкової величини теоретично ймовірності. Математичне очікування випадкової величини xпозначається M(x).

Математичне очікування – це


Математичне очікування – цетеоретично ймовірності середньозважена величина всіх можливих значень, які може набувати ця випадкова величина.


Математичне очікування – цесума творів всіх можливих значень випадкової величини на ймовірність цих значень.

Математичне очікування – цесередня вигода від того чи іншого рішення за умови, що подібне рішення може бути розглянуте в рамках теорії великих чисел та тривалої дистанції.


Математичне очікування – цетеоретично азартних ігор сума виграшу, яку може заробити чи програти гравець, загалом, за кожною ставкою. На мові азартних гравців це іноді називається "перевагою гравця" (якщо воно позитивне для гравця) або "перевагою казино" (якщо воно негативне для гравця).

Математичне очікування – цевідсоток прибутку на виграш, помножений на середній прибуток, мінус ймовірність збитку, помножена на середні збитки.


Математичне очікування випадкової величини у математичній теорії

Однією з найважливіших числових показників випадкової величини є математичне очікування. Введемо поняття системи випадкових величин. Розглянемо сукупність випадкових величин, що є результатами однієї й тієї ж випадкового експерименту. Якщо - одне з можливих значень системи, то події відповідає певна ймовірність, що задовольняє аксіомам Колмогорова. Функція, визначена за будь-яких можливих значеннях випадкових величин, називається спільним законом розподілу. Ця функція дозволяє обчислювати ймовірності будь-яких подій. Зокрема, спільний закон розподілу випадкових величин і, які приймають значення з множини та, задається ймовірностями.


Термін «математичне очікування» введений П'єром Сімоном маркізом де Лапласом (1795) і походить від поняття «очікуваного значення виграшу», що вперше з'явився в 17 столітті в теорії азартних ігор у працях Блеза Паскаля і Християна Гюйгенса. Проте перше повне теоретичне осмислення та оцінка цього поняття дано Пафнутиєм Львовичем Чебишевим (середина 19 століття).


Закон розподілу випадкових числових величин (функція розподілу та ряд розподілу чи щільність ймовірності) повністю описують поведінку випадкової величини. Але в ряді завдань достатньо знати деякі числові характеристики досліджуваної величини (наприклад, її середнє значення та можливе відхилення від нього), щоб відповісти на поставлене запитання. Основними числовими характеристиками випадкових величин є математичне очікування, дисперсія, мода та медіана.

Математичним очікуванням дискретної випадкової величини називається сума творів її можливих значень відповідні їм ймовірності. Іноді математичне очікування називають виваженим середнім, так як воно приблизно дорівнює середньому арифметичному значень випадкової величини при великій кількості дослідів. З визначення математичного очікування слід, що його значення не менше за найменше можливого значення випадкової величини і не більше за найбільше. Математичне очікування випадкової величини є невипадковою (постійною) величиною.


Математичне очікування має простий фізичний сенс: якщо на прямий розмістити одиничну масу, помістивши в деякі точки деяку масу (для дискретного розподілу), або «розмазавши» її з певною щільністю (для абсолютно безперервного розподілу), то точка, що відповідає математичному очікуванню, буде координатою "центру тяжіння" прямий.


Середнє значення випадкової величини є деяке число, що є хіба що її «представником» і замінює її за грубо орієнтовних розрахунках. Коли ми говоримо: «середній час роботи лампи дорівнює 100 годин» або «середня точка влучення зміщена щодо мети на 2 м вправо», ми цим вказуємо певну числову характеристику випадкової величини, що описує її місце розташування на числовій осі, тобто. «Характеристику становища».

З показників положення теорії ймовірностей найважливішу роль грає математичне очікування випадкової величини, яке іноді називають просто середнім значенням випадкової величини.


Розглянемо випадкову величину Х, що має можливі значення х1, х2, …, хnз ймовірностями p1, p2, …, pn. Нам потрібно охарактеризувати якимось числом положення значень випадкової величини на осі абсцис з огляду на те, що ці значення мають різні ймовірності. Для цієї мети природно скористатися так званим «середнім виваженим» із значень xi, причому кожне значення xi при середовищі має враховуватися з «вагою», пропорційним до ймовірності цього значення. Таким чином, ми обчислимо середню випадкову величину X, яке ми позначимо M | X |:


Це середнє зважене значення називається математичним очікуванням випадкової величини. Отже, ми запровадили у розгляді одне з найважливіших понять теорії ймовірностей – поняття математичного очікування. Математичним очікуванням випадкової величини називається сума творів всіх можливих значень випадкової величини на ймовірності цих значень.

Хпов'язано своєрідною залежністю із середнім арифметичним наглядом значень випадкової величини при великій кількості дослідів. Ця залежність того ж типу, як залежність між частотою і ймовірністю, а саме: при великій кількості дослідів середнє арифметичне спостережуваних значень випадкової величини наближається (збігається ймовірністю) до її математичного очікування. З наявності зв'язку між частотою та ймовірністю можна вивести як наслідок наявність подібного ж зв'язку між середнім арифметичним та математичним очікуванням. Справді, розглянемо випадкову величину Х, що характеризується поруч розподілу:


Нехай проводиться Nнезалежних дослідів, у кожному з яких величина Xнабуває певного значення. Припустимо, що значення x1з'явилося m1раз, значення x2з'явилося m2раз, взагалі значення xiз'явилося mi разів. Обчислимо середнє арифметичне спостерігання значень величини Х, яке, на відміну від математичного очікування М | X |ми позначимо M*|X|:

При збільшенні кількості дослідів Nчастоти piбудуть наближатися (збігатися ймовірно) до відповідних ймовірностей. Отже, і середнє арифметичне спостерігання значень випадкової величини M | X |зі збільшенням кількості дослідів наближатися (збігається ймовірно) до її математичного очікування. Сформульований вище зв'язок між середнім арифметичним та математичним очікуванням становить зміст однієї з форм закону великих чисел.

Ми вже знаємо, що всі форми закону великих чисел констатують факт стійкості деяких середніх за великої кількості дослідів. Тут йдеться про стійкість середнього арифметичного із низки спостережень однієї й тієї самої величини. При невеликій кількості дослідів середнє арифметичне їх результатів випадково; при достатньому збільшенні кількості дослідів воно стає «майже випадковим» і, стабілізуючись, наближається до постійної величини – математичного очікування.


Властивість стійкості середніх за великої кількості досвідів легко перевірити експериментально. Наприклад, зважуючи якесь тіло в лабораторії на точних терезах, ми в результаті зважування отримуємо щоразу нове значення; щоб зменшити помилку спостереження, ми зважуємо тіло кілька разів і користуємося середнім арифметичним отриманим значенням. Легко переконатися, що при подальшому збільшенні кількості дослідів (зважувань) середнє арифметичне реагує на це збільшення дедалі менше і при досить великій кількості дослідів практично перестає змінюватися.

Слід зазначити, що найважливіша характеристика положення випадкової величини – математичне очікування – існує для всіх випадкових величин. Можна скласти приклади таких випадкових величин, котрим математичного очікування немає, оскільки відповідна сума чи інтеграл розходяться. Однак для практики такі випадки суттєвого інтересу не становлять. Зазвичай випадкові величини, з якими ми маємо справу, мають обмежену область можливих значень і, безумовно, мають математичне очікування.


Крім найважливішої з характеристик положення випадкової величини - математичного очікування, - на практиці іноді застосовуються інші характеристики положення, зокрема, мода і медіана випадкової величини.


Модою випадкової величини називається її найімовірніше значення. Термін «найбільш ймовірне значення», строго кажучи, застосовується тільки до перервних величин; для безперервної величини модою є значення, у якому щільність ймовірності максимальна. На малюнках показана мода відповідно для перервної та безперервної випадкових величин.


Якщо багатокутник розподілу (крива розподілу) має більше одного максимуму, розподіл називається полімодальним.



Іноді зустрічаються розподіли, що мають посередині не максимум, а мінімум. Такі розподіли називають «антимодальними».


У випадку мода і математичне очікування випадкової величини не збігаються. У окремому випадку, коли розподіл є симетричним і модальним (тобто має моду) і існує математичне очікування, воно співпадає з модою і центром симетрії розподілу.

Часто застосовується ще одне характеристика становища – так звана медіана випадкової величини. Цією характеристикою користуються зазвичай лише безперервних випадкових величин, хоча формально можна її визначити й у перервної величини. Геометрично медіана – це абсцис точки, в якій площа, обмежена кривою розподілу, ділиться навпіл.


У разі симетричного модального розподілу медіана збігається з математичним очікуванням та модою.

Математичне очікування є середнє значення, випадкової величини - числова характеристика розподілу ймовірностей випадкової величини. Найзагальнішим чином математичне очікування випадкової величини Х(w)визначається як інтеграл Лебега по відношенню до імовірнісної міри Ру вихідному імовірнісному просторі:


Математичне очікування може бути обчислено і як інтеграл Лебега від хщодо розподілу ймовірностей рхвеличини X:


Звичайно можна визначити поняття випадкової величини з нескінченним математичним очікуванням. Типовим прикладом є часи повернення в деяких випадкових блуканнях.

За допомогою математичного очікування визначаються багато числових і функціональних характеристик розподілу (як математичне очікування відповідних функцій від випадкової величини), наприклад, функція, що виробляє, характеристична функція, моменти будь-якого порядку, зокрема дисперсія, коваріація.

Математичне очікування є характеристикою розташування значень випадкової величини (середнє значення її розподілу). У цьому ролі математичне очікування служить деяким " типовим " параметром розподілу та її роль аналогічна ролі статичного моменту - координати центру тяжкості розподілу маси - у механіці. Від інших характеристик розташування, за допомогою яких розподіл описується в загальних рисах, - медіан, мод, математичне очікування відрізняється тим великим значенням, яке і відповідна йому характеристика розсіювання - дисперсія - мають у граничних теоремах теорії ймовірностей. З найбільшою повнотою сенс математичного очікування розкривається законом великих чисел (нерівність Чебишева) і посиленим законом великих чисел.

Математичне очікування дискретної випадкової величини

Нехай є деяка випадкова величина, яка може прийняти одне з декількох числових значень (припустимо, кількість очок при кидку кістки може бути 1, 2, 3, 4, 5 або 6). Часто на практиці для такої величини виникає питання: а яке значення вона набуває "в середньому" при великій кількості тестів? Яким буде наш середній дохід (або збиток) від кожної із ризикованих операцій?


Скажімо, є якась лотерея. Ми хочемо зрозуміти, вигідно чи ні в ній взяти участь (або навіть брати участь неодноразово, регулярно). Допустимо, виграшний кожен четвертий квиток, приз складе 300 руб., А ціна будь-якого квитка – 100 руб. За нескінченно великої кількості участі виходить ось що. У трьох чвертях випадків ми програємо, кожні три програші коштуватимуть 300 руб. У кожному четвертому випадку ми виграємо 200 руб. (Приз мінус вартість), тобто за чотири участі ми в середньому втрачаємо 100 руб., За одну – у середньому 25 руб. Разом у середньому темпи нашого руйнування становитимуть 25 крб./квиток.

Кидаємо гральну кістку. Якщо вона не шахрайська (без усунення центру тяжкості тощо), то скільки ми в середньому матимемо очок за раз? Оскільки кожен варіант рівноймовірний, беремо тупо середнє арифметичне та отримуємо 3,5. Оскільки це СЕРЕДНІШЕ, то нема чого обурюватися, що 3,5 очок ніякий конкретний кидок не дасть - ну немає у цього куба грані з таким числом!

Тепер узагальним наші приклади:


Звернемося до щойно наведеної картинки. Зліва табличка розподілу випадкової величини. Величина X може набувати одне з n можливих значень (наведені у верхньому рядку). Жодних інших значень не може бути. Під кожним можливим значенням знизу підписано його можливість. Справа наведена формула, де M(X) і називається математичним очікуванням. Сенс цієї величини в тому, що при великій кількості випробувань (при великій вибірці) середнє значення буде прагнути цього математичного очікування.

Повернемося знову до того ж грального куба. Математичне очікування кількості очок при кидку дорівнює 3,5 (порахуйте самі за формулою, якщо не вірите). Скажімо, ви кинули його кілька разів. Випали 4 та 6. У середньому вийшло 5, тобто далеко від 3,5. Кинули ще раз, випало 3, тобто в середньому (4 + 6 + 3) / 3 = 4,3333 ... Якось далеко від математичного очікування. А тепер проведіть шалений експеримент - киньте куб 1000 разів! І якщо в середньому не буде рівно 3,5, то буде близько до того.

Порахуємо математичне очікування вище описаної лотереї. Табличка виглядатиме ось так:


Тоді математичне очікування складе, як ми встановили вище.


Інша справа, що так само "на пальцях", без формули, було б важкувато, якби було більше варіантів. Ну скажімо, було б 75% програшних квитків, 20% виграшних квитків та 5% особливо виграшних.

Тепер деякі властивості математичного очікування.

Довести це просто:


Постійний множник допускається виносити за знак математичного очікування, тобто:


Це окремий випадок якості лінійності математичного очікування.

Інше наслідок лінійності математичного очікування:

тобто математичне очікування суми випадкових величин дорівнює сумі математичних очікувань випадкових величин.

Нехай X, Y – незалежні випадкові величинитоді:

Це теж нескладно довести) XYсаме є випадковою величиною, при цьому якщо вихідні величини могли приймати nі mзначень відповідно, то XYможе набувати nm значень. Імовірність кожного з значень обчислюється, виходячи з того, що ймовірності незалежних подій перемножуються. У результаті отримуємо ось що:


Математичне очікування безперервної випадкової величини

У безперервних випадкових величин є така характеристика, як густина розподілу (щільність ймовірності). Вона, по суті, характеризує ситуацію, що деякі значення з множини дійсних чисел випадкова величина набуває частіше, деякі - рідше. Наприклад, розглянемо ось який графік:


Тут X- Власне випадкова величина, f(x)- Щільність розподілу. Судячи з даного графіку, при дослідах значення Xчасто буде числом, близьким до нуля. Шанси ж перевищити 3 або виявитися менше -3 скоріше чисто теоретичні.


Нехай, наприклад, є рівномірний розподіл:



Це цілком відповідає інтуїтивному розумінню. Скажімо, якщо ми отримуємо при рівномірному розподілі багато випадкових дійсних чисел, кожне з відрізків |0; 1| , то середнє арифметичне має бути близько 0,5.

Властивості математичного очікування - лінійність і т.д., застосовні для дискретних випадкових величин, застосовні тут.

Взаємозв'язок математичного очікування з іншими статистичними показниками

У статистичному аналізі поряд з математичним очікуванням існує система взаємозалежних показників, що відображають однорідність явищ та стійкість процесів. Часто показники варіації немає самостійного сенсу і використовуються подальшого аналізу даних. Винятком є ​​коефіцієнт варіації, який характеризує однорідність даних, що цінної статистичної характеристикою.


Ступінь мінливості чи стійкості процесів у статистичній науці може вимірюватися за допомогою кількох показників.

Найбільш важливим показником, що характеризує мінливість випадкової величини, є Дисперсія, яка найтіснішим і безпосередньо пов'язана з математичним очікуванням. Цей параметр активно використовують у інших видах статистичного аналізу (перевірка гіпотез, аналіз причинно-наслідкових зв'язків та інших.). Як і середнє лінійне відхилення, дисперсія також відбиває міру розкиду даних навколо середньої величини.


Мова знаків корисно перекласти мовою слів. Вийде, що дисперсія – це середній квадрат відхилень. Тобто спочатку розраховується середнє значення, потім береться різниця між кожним вихідним та середнім значенням, зводиться у квадрат, складається і потім поділяється на кількість значень у даній сукупності. Різниця між окремим значенням та середньою відображає міру відхилення. У квадрат зводиться для того, щоб всі відхилення стали виключно позитивними числами і щоб уникнути взаємознищення позитивних та негативних відхилень при їхньому сумуванні. Потім, маючи квадрати відхилень, ми просто розраховуємо середню арифметичну. Середній – квадрат – відхилень. Відхилення зводяться до квадрата, і вважається середня. Розгадка магічного слова «дисперсія» полягає лише у трьох словах.

Однак у чистому вигляді, як, наприклад, середня арифметична, або індекс, дисперсія не використовується. Це швидше допоміжний та проміжний показник, який використовується для інших видів статистичного аналізу. У неї навіть одиниці виміру нормальної немає. Судячи з формули, це квадрат одиниці виміру вихідних даних.

Нехай ми вимірюємо випадкову величину Nразів, наприклад, десять разів вимірюємо швидкість вітру та хочемо знайти середнє значення. Як пов'язане середнє значення із функцією розподілу?

Або кидатимемо гральний кубик велику кількість разів. Кількість очок, яке випаде на кубику при кожному кидку, є випадковою величиною і може набувати будь-яких натуральних значень від 1 до 6. Середнє арифметичне випалих очок, підрахованих за всі кидки кубика, теж є випадковою величиною, проте при великих Nвоно прагне до цілком конкретного числа – математичного очікування Mx. У разі Mx = 3,5.

Яким чином вийшла ця величина? Нехай у Nвипробуваннях n1раз випало 1 очко, n2разів – 2 очки тощо. Тоді кількість наслідків, у яких випало одне очко:


Аналогічно для результатів, коли випало 2, 3, 4, 5 та 6 очок.


Припустимо тепер, що знаємо закон розподілу випадкової величини x, тобто знаємо, що випадкова величина x може набувати значення x1, x2, ..., xk з ймовірностями p1, p2, ..., pk.

Математичне очікування Mx випадкової величини x дорівнює:


Математичне очікування який завжди є розумною оцінкою якоїсь випадкової величини. Так, для оцінки середньої заробітної плати розумніше використовувати поняття медіани, тобто такої величини, що кількість людей, які отримують меншу, ніж медіана, зарплату та більшу, збігаються.

Імовірність р1 того, що випадкова величина х виявиться меншою за х1/2, і ймовірність р2 того, що випадкова величина x виявиться більшою за х1/2, однакові й рівні 1/2. Медіана визначається однозначно задля всіх розподілів.


Стандартним або Середньоквадратичним відхиленняму статистиці називається ступінь відхилення даних спостережень чи множин від СЕРЕДНЬОГО значення. Позначається літерами s чи s. Невелике стандартне відхилення вказує на те, що дані групуються навколо середнього значення, а значне - що початкові дані розташовані далеко від нього. Стандартне відхилення дорівнює квадратному кореню величини, яка називається дисперсією. Вона є середня кількість суми зведених у квадрат різниць початкових даних, що відхиляються від середнього значення. Середньоквадратичним відхиленням випадкової величини називається корінь квадратний із дисперсії:


приклад. В умовах випробувань при стрільбі по мішені обчислити дисперсію та середньоквадратичне відхилення випадкової величини:


Варіація- коливання, змінність величини ознаки в одиниць сукупності. Окремі числові значення ознаки, що у вивчаемой сукупності, називають варіантами значень. Недостатність середньої величини для повної характеристики сукупності змушує доповнювати середні величини показниками, що дозволяють оцінити типовість цих середніх шляхом вимірювання коливання (варіації) ознаки, що вивчається. Коефіцієнт варіації обчислюють за такою формулою:


Розмах варіації(R) являє собою різницю між максимальним і мінімальним значеннями ознаки в досліджуваній сукупності. Цей показник дає найзагальніше уявлення про коливання досліджуваного ознаки, оскільки показує різницю лише між граничними значеннями варіантів. Залежність крайніх значень ознаки надає розмаху варіації нестійкий, випадковий характер.


Середнє лінійне відхиленняявляє собою середнє арифметичне з абсолютних (за модулем) відхилень всіх значень аналізованої сукупності від їхньої середньої величини:


Математичне очікування теорії азартних ігор

Математичне очікування – цесередня кількість грошей, яку гравець в азартні ігри може виграти чи програти на цій ставці. Це дуже важливе поняття для гравця, тому що воно є основним для оцінки більшості ігрових ситуацій. Математичне очікування – це також оптимальний інструмент аналізу основних карткових розкладів і ігрових ситуацій.

Допустимо, ви граєте з другом у монетку, щоразу роблячи ставку порівну по $1 незалежно від того, що випаде. Решка – ви виграли, орел – програли. Шанси на те, що випаде решка один до одного, і ви ставите $1 до $1. Таким чином, математичне очікування у вас рівне нулю, т.к. з точки зору математики ви не можете знати ви будете вести або програвати після двох кидків або після 200.


Ваш годинний виграш дорівнює нулю. Часовий виграш – це та кількість грошей, яку ви очікуєте виграти за годину. Ви можете кидати монету 500 разів протягом години, але не виграєте і програєте, т.к. Ваші шанси ні позитивні, ні негативні. Якщо дивитися, з погляду серйозного гравця, така система ставок непогана. Але це просто втрата часу.

Але припустимо, хтось хоче поставити $2 проти вашого $1 у цю гру. Тоді ви одразу ж маєте позитивне мотоочікування в 50 центів з кожної ставки. Чому 50 центів? У середньому одну ставку ви виграєте, другу програєте. Поставте перший долар – і втратите $1, ставте другий – виграєте $2. Ви двічі зробили ставку $1 і йдете попереду на $1. Таким чином кожна з ваших однодоларових ставок дала вам 50 центів.


Якщо за годину монета випаде 500 разів, ваш годинний виграш складе вже $250, т.к. в середньому ви втратили по одному долару 250 разів та виграли по два долари 250 разів. $500 мінус $250 і $250, що і становить сумарний виграш. Зверніть увагу, що матожидання є сумою, яку в середньому ви виграли на одній ставці, дорівнює 50 центам. Ви виграли $250, роблячи ставку за доларом 500 разів, що дорівнює 50 центам зі ставки.

Математичне очікування немає нічого спільного з короткочасним результатом. Ваш опонент, який вирішив ставити проти вас $2 міг обіграти вас на перших десяти кидках поспіль, але ви, володіючи перевагою ставок 2 до 1 за інших рівних, за будь-яких обставин заробляєте 50 центів з кожної ставки в $1. Немає різниці, ви виграєте або програєте одну ставку або кілька ставок, але тільки за умови, що у вас вистачить готівки, щоб спокійно компенсувати витрати. Якщо ви продовжуватимете ставити так само, то за тривалий період часу ваш виграш підійде до суми маточень в окремих кидках.


Щоразу, роблячи ставку з кращим результатом (ставка, яка може виявитися вигідною на довгій дистанції), коли шанси на вашу користь, ви обов'язково щось виграєте на ній, і не важливо чи ви втрачаєте її чи ні в даній роздачі. І навпаки, якщо ви зробили ставку з найгіршим результатом (ставка, яка невигідна на довгій дистанції), коли шанси не на вашу користь, ви щось втрачаєте незалежно від того, виграли ви або програли в даній роздачі.

Ви робите ставку з найкращим результатом, якщо маточування у вас позитивне, а воно є позитивним, якщо шанси на вашому боці. Роблячи ставку з найгіршим результатом, у вас негативне маточування, яке буває, коли шанси проти вас. Серйозні гравці роблять ставки тільки з найкращим результатом, за гіршого – вони пасують. Що означає шанси на вашу користь? Ви можете зрештою виграти більше, ніж приносять реальні шанси. Реальні шанси на те, що випаде решка 1:1, але у вас виходить 2:1 за рахунок співвідношення ставок. У цьому випадку шанси на вашу користь. Ви точно отримуєте найкращий результат із позитивним очікуванням у 50 центів за одну ставку.


Ось складніший приклад математичного очікування. Приятель пише цифри від одного до п'яти і робить ставку $5 проти $1 на те, що ви не визначите загадану цифру. Чи погоджуватись вам на таке парі? Яке тут маточкування?

У середньому чотири рази ви помилитеся. Виходячи з цього, шанси проти того, що ви відгадаєте цифру, складуть 4 до 1. Шанси за те, що при одній спробі ви втратите долар. Тим не менш, ви виграєте 5 до 1, при можливості програти 4 до 1. Тому шанси на вашу користь ви можете приймати парі і сподіватися на кращий результат. Якщо ви зробите таку ставку п'ять разів, в середньому ви програєте чотири рази $1 і один раз виграєте $5. Виходячи з цього, за всі п'ять спроб ви заробите $1 з позитивним математичним очікуванням 20 центів за одну ставку.


Гравець, який збирається виграти більше, ніж ставить, як у прикладі вище – ловить шанси. І навпаки, він губить шанси, коли має намір виграти менше, ніж ставить. Гравець, який робить ставку може мати або позитивне, або негативне маточування, яке залежить від того, ловить він або губить шанси.

Якщо ви поставите $50 для того, щоб виграти $10 за ймовірності виграшу 4 до 1, то ви отримаєте негативне маточування $2, т.к. в середньому ви виграєте чотири рази по $10 і один раз програєте $50, з чого видно, що втрата за одну ставку становитиме $10. Але якщо ви поставите $30 для того, щоб виграти $10, при тих же шансах виграшу 4 до 1, то в даному випадку ви маєте позитивне очікування $2, т.к. ви знову виграєте чотири рази по $10 і один раз програєте $30, що становитиме прибуток у $10. Дані приклади показують, перша ставка погана, а друга – хороша.


Математичне очікування є центром будь-якої ігрової ситуації. Коли букмекер закликає футбольних уболівальників ставити $11, щоб виграти $10, то він має позитивне мотоочкування з кожних $10 у розмірі 50 центів. Якщо казино виплачує рівні гроші з пасової лінії в крепсі, то позитивне очікування казино становитиме приблизно $1.40 з $100, т.к. ця гра побудована так, що кожен, хто поставив на цю лінію, в середньому програє 50.7% та виграє 49.3% загального часу. Безперечно, саме це начебто мінімальне позитивне маточування і приносить колосальні прибутки власникам казино по всьому світу. Як зауважив господар казино Vegas World Боб Ступак, «одна тисячна відсотка негативної ймовірності на досить довгій дистанції розорить найбагатшу людину у світі».


Математичне очікування під час гри в Покер

Гра в Покер є найбільш показовим та наочним прикладом з точки зору використання теорії та властивостей математичного очікування.


Математичне очікування (англ. Expected Value) у Покері – середня вигода від того чи іншого рішення за умови, що подібне рішення може бути розглянуте в рамках теорії великих чисел та тривалої дистанції. Успішна гра в покер полягає в тому, щоб завжди приймати ходи лише з позитивним математичним очікуванням.

Математичний сенс математичного очікування при грі в покер полягає в тому, що ми часто стикаємося з випадковими величинами при прийнятті рішення (ми не знаємо, які карти на руках у опонента, які карти прийдуть на наступних колах торгівлі). Ми повинні розглядати кожне з рішень з погляду теорії великих чисел, яка свідчить, що з досить великий вибірці середнє значення випадкової величини прагнутиме її математичного очікування.


Серед приватних формул для обчислення математичного очікування, в покер найбільш застосовна наступна:

Під час гри в покер математичне очікування можна розраховувати як для ставок, так і для колів. У першому випадку до уваги слід брати фолд-еквіті, у другому – власні шанси банку. Оцінюючи математичного очікування тієї чи іншої ходу слід пам'ятати, що фолд завжди має нульове маточування. Таким чином, скидання карт завжди буде більш вигідним рішенням, ніж будь-який негативний хід.

Очікування говорить вам про те, що ви можете очікувати (прибуток або збиток) на кожен долар, що ризикує вами. Казино заробляють гроші, оскільки математичне очікування від усіх ігор, які практикуються в них, на користь казино. При досить довгій серії гри очікується, що клієнт втратить свої гроші, оскільки «ймовірність» на користь казино. Однак професійні гравці у казино обмежують свої ігри короткими проміжками часу, тим самим збільшуючи ймовірність на свою користь. Те саме стосується й інвестування. Якщо ваше очікування є позитивним, ви можете заробити більше грошей, роблячи багато угод в короткий період часу. Очікування це ваш відсоток прибутку на виграш, помножений на середній прибуток, мінус ваша можливість збитку, помножена на середній збиток.


Покер також можна розглянути з погляду математичного очікування. Ви можете припустити, що певний хід вигідний, але в деяких випадках він може виявитися далеко не найкращим, тому що вигідніший інший хід. Допустимо, ви зібрали фул-хаус у п'ятикартковому покері з обміном. Ваш суперник робить ставку. Ви знаєте, що, якщо підвищите ставку, він відповість. Тому підвищення виглядає найкращою тактикою. Але якщо ви все ж таки підніміть ставку, що залишилися двоє гравців, точно скинуть карти. Але якщо ви зрівняєте ставку, то повністю впевнені, що двоє інших гравців після вас надійдуть також. При підвищенні ставки ви отримуєте одну одиницю, а просто зрівнюючи дві. Таким чином, вирівнювання дає вам більш високе позитивне математичне очікування, і буде найкращою тактикою.

Математичне очікування також може дати уявлення про те, яка в покер тактика менш вигідна, а яка - більше. Наприклад, граючи на певній руці, ви вважаєте, що ваші втрати в середньому становитимуть 75 центів, включаючи анте, таку руку слід грати, т.к. це краще, ніж скинутися, коли анте дорівнює $1.


Іншою важливою причиною для розуміння суті математичного очікування є те, що воно дає вам почуття спокою незалежно від того, чи ви виграли ставку чи ні: якщо ви зробили хорошу ставку або вчасно рятували, ви знатимете, що ви заробили або зберегли певну кількість грошей, яку гравець слабкіше не зміг вберегти. Набагато складніше скинути карти, якщо ви засмучені тим, що суперник на обміні зібрав сильнішу комбінацію. При цьому, гроші, які ви заощадили, не граючи, замість того, щоб ставити, додаються до вашого виграшу за ніч або за місяць.

Просто пам'ятайте, що якщо поміняти ваші руки, ваш суперник відповів би вам, і як ви побачите у статті «фундаментальна покерна теорема» це лише одна з ваших переваг. Ви повинні радіти, коли це станеться. Вам навіть можна навчитися отримувати задоволення від програної роздачі, тому що ви знаєте, що інші гравці на вашому місці програли б набагато більше.


Як говорилося в прикладі з грою в монетку на початку, часовий коефіцієнт прибутку пов'язаний з математичним очікуванням, і це поняття особливо важливе для професійних гравців. Коли ви збираєтеся грати в покер, ви повинні подумки прикинути, скільки ви зможете виграти за годину гри. У більшості випадків вам необхідно буде ґрунтуватися на вашій інтуїції та досвіді, але ви також можете користуватися деякими математичними викладками. Наприклад, ви граєте в лоуболл з обміном, і спостерігаєте, що три учасники роблять ставки по $10, а потім змінюють дві карти, що є дуже поганою тактикою, ви можете порахувати для себе, що кожен раз, коли вони ставлять $10, вони втрачають близько $2. Кожен з них робить це вісім разів на годину, а значить, усі троє втрачають за годину приблизно $48. Ви один з чотирьох гравців, що залишилися, приблизно рівні, відповідно ці чотири гравці (і ви серед них) повинні розділити $48, і прибуток кожного складе $12 на годину. Ваш часовий коефіцієнт у цьому випадку просто дорівнює вашій долі від суми грошей, програної трьома поганими гравцями за годину.

За великий період сумарний виграш гравця становить суму його математичних очікувань в окремих роздачах. Чим більше ви граєте з позитивним очікуванням, тим більше виграєте, і навпаки, чим більше роздач з негативним очікуванням ви зіграєте, тим більше ви програєте. Внаслідок цього, слід віддавати перевагу грі, яка зможе максимально збільшити ваше позитивне очікування або зведе нанівець негативне, щоб ви змогли підняти до максимуму ваш годинний виграш.


Позитивне математичне очікування в ігровій стратегії

Якщо ви знаєте, як рахувати карти, у вас може бути перевага перед казино, якщо вони не помітять цього і не викинуть вас. Казино люблять п'яних гравців і не переносять тих, хто вважає карти. Перевага дозволить вам з часом виграти більше разів, ніж програти. Хороше управління капіталом при використанні розрахунків математичного очікування може допомогти отримати більше прибутку з вашої переваги і скоротити втрати. Без переваги вам найкраще віддати гроші на благодійність. У грі на біржі перевагу дає система гри, що створює більший прибуток, ніж втрати, різниця цін та комісійні. Жодне управління капіталом не врятує погану ігрову систему.

Позитивне очікування визначається значенням, що перевищує нуль. Чим більше це число, тим сильніше статистичне очікування. Якщо значення менше нуля, то математичне очікування також буде негативним. Чим більший модуль негативного значення, тим гірша ситуація. Якщо результат дорівнює нулю, то очікування є беззбитковим. Ви можете виграти тільки тоді, коли у вас є позитивне математичне очікування, розумна система гри. Гра інтуїції призводить до катастрофи.


Математичне очікування та біржова торгівля

Математичне очікування – досить широко популярний статистичний показник при здійсненні біржових торгів на фінансових ринках. Насамперед цей параметр використовують для аналізу успішності торгівлі. Не складно здогадатися, що чим більше це значення, тим більше підстав вважати торгівлю успішною. Звичайно, аналіз роботи трейдера не може проводитися лише за допомогою даного параметра. Тим не менш, обчислюване значення в сукупності з іншими способами оцінки якості роботи може істотно підвищити точність аналізу.


Математичне очікування часто обчислюється у сервісах моніторингів торгових рахунків, що дозволяє швидко оцінювати роботу, що здійснюється на депозиті. Як виняток можна навести стратегії, у яких використовується "пересиджування" збиткових угод. Трейдеру може деякий час супроводжувати успіх, а тому, в його роботі може не виявитися збитків взагалі. У такому разі, орієнтуватися тільки по мотоочікуванню не вдасться, адже не буде враховано ризики, що використовуються в роботі.

У торгівлі над ринком математичне очікування найчастіше застосовують під час прогнозування прибутковості будь-якої торгової стратегії чи прогнозуванні доходів трейдера з урахуванням статистичних даних його попередніх торгів.

Щодо управління капіталом дуже важливо розуміти, що при скоєнні угод із негативним очікуванням немає схеми управління грошима, яка може однозначно принести високий прибуток. Якщо ви продовжуєте грати на біржі в цих умовах, то незалежно від способу управління грошима ви втратите весь ваш рахунок, яким би великим він не був на початку.

Ця аксіома правильна не тільки для гри або угод з негативним очікуванням, вона дійсна також для гри з рівними шансами. Тому єдиний випадок, коли ви маєте шанс отримати вигоду в довгостроковій перспективі, - це укладання угод з позитивним математичним очікуванням.


Відмінність між негативним очікуванням і позитивним очікуванням - це різницю між життям і смертю. Не має значення, наскільки позитивне чи наскільки негативне очікування; важливо лише те, позитивне воно чи негативне. Тому до розгляду питань управління капіталом ви маєте знайти гру з позитивним очікуванням.

Якщо у вас такої гри немає, тоді жодне управління грошима у світі не врятує вас. З іншого боку, якщо у вас є позитивне очікування, то можна за допомогою правильного управління грошима перетворити його на функцію експоненційного зростання. Не має значення, як мало це позитивне очікування! Іншими словами, не має значення, наскільки прибутковою є торгова система на основі одного контракту. Якщо у вас є система, яка виграє 10 доларів на контракт в одній угоді (після відрахування комісійних та прослизання), можна використовувати методи управління капіталом таким чином, щоб зробити її більш прибутковою, ніж систему, яка показує середній прибуток 1000 доларів за угоду (після відрахування комісійних та прослизання).


Має значення не те, наскільки прибуткова система була, а те, наскільки точно можна сказати, що система покаже, принаймні, мінімальний прибуток у майбутньому. Тому найбільш важливе приготування, яке може зробити трейдер, це переконатися в тому, що система покаже позитивне математичне очікування в майбутньому.

Щоб мати позитивне математичне очікування у майбутньому, дуже важливо не обмежувати ступеня свободи вашої системи. Це досягається не лише скасуванням або зменшенням кількості параметрів, що підлягають оптимізації, але також шляхом скорочення якомога більшої кількості правил системи. Кожен параметр, який ви додаєте, кожне правило, яке ви вносите, кожна дрібна зміна, яку ви робите в системі, скорочує кількість ступенів свободи. В ідеалі, вам потрібно побудувати досить примітивну та просту систему, яка постійно приноситиме невеликий прибуток майже на будь-якому ринку. І знову важливо, щоб ви зрозуміли, - не має значення, наскільки прибутковою є система, поки вона прибуткова. Гроші, які ви заробите у торгівлі, будуть зароблені за допомогою ефективного управління грошима.

Торгова система - це просто засіб, який дає вам позитивне математичне очікування, щоб можна було керувати грошима. Системи, які працюють (показують принаймні мінімальний прибуток) тільки на одному або декількох ринках або мають різні правила або параметри для різних ринків, найімовірніше, не працюватимуть у режимі реального часу досить довго. Проблема більшості технічно орієнтованих трейдерів полягає в тому, що вони витрачають дуже багато часу та зусиль на оптимізацію різних правил та значень параметрів торгової системи. Це дає протилежні результати. Замість витрачати сили та комп'ютерний час на збільшення прибутків торгової системи, спрямуйте енергію на збільшення рівня надійності отримання мінімального прибутку.

Знаючи, що управління капіталом - це лише числова гра, яка вимагає використання позитивних очікувань, трейдер може припинити пошуки "священного Грааля" біржової торгівлі. Натомість він може зайнятися перевіркою свого торгового методу, з'ясувати, наскільки цей метод логічно обґрунтований, чи дає він позитивні очікування. Правильні методи управління капіталом, що застосовуються до будь-яких, навіть дуже посередніх методів ведення торгівлі, самі зроблять решту роботи.


Будь-якому трейдеру для успіху у своїй роботі необхідно вирішити три найважливіші завдання: . Досягти, щоб кількість вдалих угод перевищувала неминучі помилки та прорахунки; Налаштувати свою систему торгівлі так, щоб можливість заробітку була якнайчастіше; Досягти стабільності позитивного результату своїх операцій.

І тут нам, працюючим трейдерам, непогану допомогу може надати математичне очікування. Цей термін теоретично ймовірності одна із ключових. З його допомогою можна дати усереднену оцінку деякому випадковому значенню. Математичне очікування випадкової величини подібно до центру тяжкості, якщо уявити всі можливі ймовірності точками з різною масою.


Що стосується торгової стратегії з метою оцінки її ефективності найчастіше використовують математичне очікування прибутку (чи збитку). Цей параметр визначають, як суму творів заданих рівнів прибутку та втрат та ймовірності їх появи. Наприклад, розроблена стратегія торгівлі передбачає, що 37% всіх операцій принесуть прибуток, а частина – 63% - буде збитковою. При цьому, середній дохід від вдалої угоди складе 7 доларів, а середній програш дорівнюватиме 1,4 долара. Розрахуємо математичне очікування торгівлі за такою системою:

Що означає це число? Воно говорить про те, що, дотримуючись правил цієї системи, в середньому ми отримуватимемо 1,708 долара від кожної закритої угоди. Оскільки отримана оцінка ефективності більша за нуль, то таку систему цілком можна використовувати для реальної роботи. Якщо ж у результаті розрахунку математичне очікування вийде негативним, це вже говорить про середній збиток і така торгівля призведе до руйнування.

Розмір прибутку однією угоду то, можливо виражений також і відносної величиною як %. Наприклад:

- Відсоток доходу на 1 угоду - 5%;

- Відсоток успішних торгових операцій - 62%;

- Відсоток збитку в розрахунку на 1 угоду - 3%;

- Відсоток невдалих угод - 38%;

Тобто середня угода принесе 1,96%.

Можна розробити систему, яка незважаючи на переважання збиткових угод даватиме позитивний результат, оскільки її МО>0.

Втім, одного очікування мало. Важко заробити, якщо система дає дуже мало торгових сигналів. У цьому випадку її прибутковість буде порівнянна з банківським відсотком. Нехай кожна операція дає в середньому лише 0,5 долара, але що якщо система передбачає 1000 операцій на рік? Це буде дуже серйозна сума за порівняно короткий час. Із цього логічно випливає, що ще однією відмітною ознакою хорошої торгової системи можна вважати короткий термін утримання позицій.


Джерела та посилання

dic.academic.ru – академічний інтернет-словник

mathematics.ru – освітній сайт з математики

nsu.ru - освітній сайт Новосибірського державного університету

webmath.ru – освітній портал для студентів, абітурієнтів та школярів.

exponenta.ru освітній математичний сайт

ru.tradimo.com – безкоштовна онлайн школа трейдингу

crypto.hut2.ru – багатопрофільний інформаційний ресурс

poker-wiki.ru – вільна енциклопедія покеру

sernam.ru – Наукова бібліотека вибраних природничо-наукових видань

reshim.su – інтернет сайт РЕШИМО завдання контрольні курсові

unfx.ru - Forex на UNFX: навчання, торгові сигнали, довірче управління

slovopedia.com – Великий Енциклопедичний словник Словопедія

pokermansion.3dn.ru - Ваш гід у світі покеру

statanaliz.info – інформаційний блог «Статистичний аналіз даних»

форекс-трейдер.рф – портал Форекс-Трейдер

megafx.ru – актуальна аналітика Форекс

fx-by.com – все для трейдера

Математичним очікуванням дискретної випадкової величини називають суму творів її можливих значень з їхньої ймовірності.

Нехай випадкова величина може набувати лише значення ймовірності яких відповідно рівні. Тоді математичне очікування випадкової величини визначається рівністю

Якщо дискретна випадкова величина приймає лічильну множину можливих значень, то

Причому математичне очікування існує, якщо ряд правої частини рівності сходиться абсолютно.

Зауваження. З визначення слідує, що математичне очікування дискретної випадкової величини є невипадковою (постійною) величиною.

Визначення математичного очікування у випадку

Визначимо математичне очікування випадкової величини, розподіл якої обов'язково дискретно. Почнемо з нагоди невід'ємних випадкових величин. Ідея полягатиме в тому, щоб апроксимувати такі випадкові величини за допомогою дискретних, для яких математичне очікування вже визначено, а математичне очікування покласти рівним межі математичних очікувань дискретних випадкових величин, що наближають її. До речі, це дуже корисна загальна ідея, яка полягає в тому, що деяка характеристика спочатку визначається для простих об'єктів, а потім для складніших об'єктів вона визначається за допомогою апроксимації їх більш простими.

Лемма 1. Нехай є довільна випадкова невід'ємна величина. Тоді існує послідовність дискретних випадкових величин, таких, що


Доведення. Розіб'ємо піввісь на рівні відрізки довжини та визначимо

Тоді властивості 1 і 2 легко випливають з визначення випадкової величини і

Лемма 2. Нехай -неотрицательная випадкова величина і дві послідовності дискретних випадкових величин, що володіють властивостями 1-3 з леми 1. Тоді

Доведення. Зазначимо, що для невід'ємних випадкових величин ми допускаємо

З огляду на властивості 3 легко бачити, що існує послідовність позитивних чисел, така що

Звідси слідує що

Використовуючи властивості математичних очікувань для дискретних випадкових величин, отримуємо

Переходячи до межі при одержуємо затвердження леми 2.

Визначення 1. Нехай - невід'ємна випадкова величина -послідовність дискретних випадкових величин, що володіють властивостями 1-3 з леми 1. Математичним очікуванням випадкової величини називається число

Лемма 2 гарантує, що не залежить від вибору послідовності, що апроксимує.

Нехай тепер – довільна випадкова величина. Визначимо

З визначення і легко випливає, що

Визначення 2. Математичним очікуванням довільної випадкової величини називається число

Якщо хоча б одне з чисел у правій частині цієї рівності, звичайно.

Властивості математичного очікування

Властивість 1. Математичне очікування постійної величини дорівнює самій постійній:

Доведення. Розглянемо постійну як дискретну випадкову величину, яка має одне можливе значення і приймає його з ймовірністю отже,

Зауваження 1. Визначимо добуток постійної величини на дискретну випадкову величину як дискретну випадкову можливі значення якої дорівнюють творам постійної на можливі значення; ймовірності можливих значень рівні ймовірностям відповідних можливих значень Наприклад, якщо ймовірність можливого значення дорівнює то ймовірність того, що величина прийме значення також дорівнює

2. Постійний множник можна виносити за знак математичного очікування:

Доведення. Нехай випадкова величина задана законом розподілу ймовірностей:

Враховуючи зауваження 1, напишемо закон розподілу випадкової величини

Примітка 2. Перш ніж перейти до наступної властивості, зазначимо, що дві випадкові величини називають незалежними, якщо закон розподілу однієї з них не залежить від того, які можливі значення набула інша величина. Інакше випадкові величини залежать. Декілька випадкових величин називають взаємно незалежними, якщо закони розподілу будь-якого з них не залежать від того, які можливі значення прийняли інші величини.

Примітка 3. Визначимо добуток незалежних випадкових величин і як випадкову величину можливі значення якої дорівнюють творам кожного можливого значення на кожне можливе значення ймовірності можливих значень твору дорівнюють творам ймовірностей можливих значень співмножників. Наприклад, якщо ймовірність можливого значення дорівнює, ймовірність можливого значення дорівнює, то ймовірність можливого значення дорівнює

Властивість 3. Математичне очікування твору двох незалежних випадкових величин дорівнює твору їх математичних очікувань:

Доведення. Нехай незалежні випадкові величини та задані своїми законами розподілу ймовірностей:

Складемо всі значення, які може набувати випадкова величина Для цього перемножимо всі можливі значення на кожне можливе значення; в результаті отримаємо і з огляду на зауваження 3, напишемо закон розподілу припускаючи для простоти, що це можливі значення твори різні (якщо це негаразд, то підтвердження проводиться аналогічно):

Математичне очікування дорівнює сумі творів всіх можливих значень з їхньої ймовірності:

Наслідок. Математичне очікування твору кількох взаємно незалежних випадкових величин дорівнює твору їх математичних очікувань.

Властивість 4. Математичне очікування суми двох випадкових величин дорівнює сумі математичних очікувань доданків:

Доведення. Нехай випадкові величини та задані такими законами розподілу:

Складемо всі можливі значення величини Для цього до кожного можливого значення додамо кожне можливе значення; Припустимо для простоти, що ці можливі значення різні (якщо це не так, то доказ проводиться аналогічно), і позначимо їх ймовірності відповідно через і

Математичне очікування величини дорівнює сумі творів можливих значень з їхньої ймовірності:

Доведемо, що Подія, яка полягає в тому, що набуде значення (імовірність цієї події дорівнює), тягне за собою подія, яка полягає в тому, що набуде значення або (ймовірність цієї події за теоремою складання дорівнює), і назад. Звідси й випливає, що Аналогічно доводяться рівність

Підставляючи праві частини цих рівностей у співвідношення (*), отримаємо

або остаточно

Дисперсія та середнє квадратичне відхилення

Насправді часто потрібно оцінити розсіювання можливих значень випадкової величини навколо її середнього значення. Наприклад, в артилерії важливо знати, наскільки купно ляжуть снаряди поблизу мети, яка має бути вражена.

На перший погляд може здатися, що для оцінки розсіювання найпростіше обчислити всі можливі значення відхилення випадкової величини, а потім знайти їхнє середнє значення. Проте такий шлях нічого не дасть, оскільки середнє відхилення, тобто. для будь-якої випадкової величини дорівнює нулю. Це властивість пояснюється лише тим, що одні можливі відхилення позитивні, інші - негативні; внаслідок їх взаємного погашення середнє значення відхилення дорівнює нулю. Ці міркування свідчать про доцільність замінити можливі відхилення їх абсолютними значеннями чи його квадратами. Так і роблять на ділі. Щоправда, у разі, коли можливі відхилення замінюють їх абсолютними значеннями, доводиться оперувати з абсолютними величинами, що призводить іноді до серйозних труднощів. Тому найчастіше йдуть іншим шляхом, тобто. обчислюють середнє значення квадрата відхилення, яке називається дисперсією.

Обчислимо середнє значення вибірки та математичне очікування випадкової величини у MS EXCEL.

Вибіркове середнє

Середнє вибіркиабо вибіркове середнє(sample average, mean) є середнєарифметичневсіх значень вибірки .

У MS EXCEL для обчислення середньої вибіркиможна використовувати функцію СРЗНАЧ(). Як аргументи функції потрібно вказати посилання на діапазон, що містить значення вибірки .

Вибіркове середнєє «хорошою» (незміщеною та ефективною) точковою оцінкою математичного очікуваннявипадкової величини (див.), тобто. середнього значеннявихідного розподілу, з якого взято вибірка .

Примітка: Про обчислення довірчих інтервалівпри оцінці математичного очікуванняможна прочитати, наприклад, у статті .

Деякі властивості середнього арифметичного :

  • Сума всіх відхилень від середнього значеннядорівнює 0:

  • Якщо до кожного з значень x i додати одну і ту ж константу з, то середнє арифметичнезбільшиться на таку саму константу;
  • Якщо кожне з значень x i помножити на ту саму константу з, то середнє арифметичнепомножиться на таку саму константу.

Математичне очікування

Середнє значенняможна обчислити як для вибірки, але випадкової величини, якщо відомо її . В цьому випадку середнє значеннямає спеціальну назву - Математичне очікування.Математичне очікуванняхарактеризує «центральне» чи середнє значення випадкової величини.

Примітка: В англомовній літературі є безліч термінів для позначення математичного очікування: expectation, mathematical expectation, EV (Expected Value), average, mean value, mean, E[X] або перший момент M[X].

математичне очікуванняобчислюється за такою формулою:

де x i – значення, яке може набувати випадкова величина, а р(x i) – ймовірність, що випадкова величина прийме це значення.

Якщо випадкова величина має , то математичне очікуванняобчислюється за такою формулою.

Математичне очікування- середнє значення випадкової величини (розподіл імовірностей стаціонарної випадкової величини) при прагненні кількості вибірок або кількості вимірювань (іноді кажуть – кількості випробувань) її до нескінченності.

Середнє арифметичне одновимірної випадкової величини кінцевого числа випробувань зазвичай називають оцінкою математичного очікування. При прагненні числа випробувань стаціонарного випадкового процесу до нескінченності оцінка математичного очікування прагне математичного очікування.

Математичне очікування - одне з основних понять у теорії ймовірностей).

Енциклопедичний YouTube

    1 / 5

    ✪ Математичне очікування та дисперсія - bezbotvy

    ✪ Теорія ймовірностей 15: Математичне очікування

    ✪ Математичне очікування

    ✪ Математичне очікування та дисперсія. Теорія

    ✪ Математичне очікування у трейдингу

    Субтитри

Визначення

Нехай заданий імовірнісний простір (Ω , A , P) (\displaystyle (Omega ,(\mathfrak (A)),\mathbb (P)))і певна на ньому випадкова. X (\displaystyle X). Тобто, за визначенням, X: Ω → R (\displaystyle X\colon \Omega \to \mathbb (R) )- Вимірна функція. Якщо існує інтеграл? X (\displaystyle X)по простору Ω (\displaystyle \Omega), то він називається математичним очікуванням, або середнім (очікуваним) значенням і позначається M [X] (\displaystyle M[X])або E [ X ] (\displaystyle \mathbb (E) [X]).

M [X] = ∫ Ω X (ω) P (d ω) . (\displaystyle M[X]=\int \limits _(\Omega )\!X(\omega)\,\mathbb (P) (d\omega).)

Основні формули для математичного очікування

M [ X ] = ∫ − ∞ ∞ x d F X (x) ; x ∈ R (\displaystyle M[X]=\int \limits _(-\infty )^(\infty )\!x\,dF_(X)(x);x\in \mathbb (R) ).

Математичне очікування дискретного розподілу

P (X = x i) = p i , ∑ i = 1 ∞ p i = 1 (\displaystyle \mathbb (P) (X=x_(i))=p_(i),\;\sum \limits _(i=1 )^(\infty )p_(i)=1),

то прямо з визначення інтеграла Лебега випливає, що

M [ X ] = ∑ i = 1 ∞ x i pi (\displaystyle M[X]=\sum \limits _(i=1)^(\infty )x_(i)\,p_(i)).

Математичне очікування цілісної величини

P (X = j) = p j, j = 0, 1,. . . ; ∑ j = 0 ∞ p j = 1 (\displaystyle \mathbb(P) (X=j)=p_(j),\;j=0,1,...;\quad \sum \limits _(j=0 )^(\infty )p_(j)=1)

то її математичне очікування може бути виражене через виробляючу функцію послідовності ( p i ) (\displaystyle \(p_(i)\))

P (s) = ∑ k = 0 ∞ p k s k (\displaystyle P(s)=\sum _(k=0)^(\infty )\;p_(k)s^(k))

як значення першої похідної в одиниці: M [X] = P′ (1) (\displaystyle M[X]=P"(1)). Якщо математичне очікування X (\displaystyle X)нескінченно, то s → 1 P ′ (s) = ∞ (\displaystyle \lim _(s\to 1)P"(s)=\infty )і ми писатимемо P ′ (1) = M [ X ] = ∞ (\displaystyle P"(1)=M[X]=\infty )

Тепер візьмемо функцію, що виробляє Q(s) (\displaystyle Q(s))послідовності «хвостів» розподілу (q k) (\displaystyle \(q_(k)\))

q k = P (X > k) = j = k + 1 ∞ p j ; Q (s) = ∑ k = 0 ∞ q k s k . (\displaystyle q_(k)=\mathbb (P) (X>k)=\sum _(j=k+1)^(\infty )(p_(j));\quad Q(s)=\sum _(k=0)^(\infty )\;q_(k)s^(k).)

Ця функція пов'язана з визначеною раніше функцією P(s) (\displaystyle P(s))властивістю: Q(s) = 1 − P(s) 1 − s (\displaystyle Q(s)=(\frac (1-P(s))(1-s)))при | s |< 1 {\displaystyle |s|<1} . З цього за теоремою-середнім випливає, що математичне очікування дорівнює просто значенню цієї функції в одиниці:

M [ X ] = P ′ (1) = Q (1) (\displaystyle M[X]=P"(1)=Q(1))

Математичне очікування абсолютно безперервного розподілу

M [ X ] = ∫ − ∞ ∞ x f (x) d x (\displaystyle M[X]=\int \limits _(-\infty )^(\infty )\!xf_(X)(x)\,dx ).

Математичне очікування випадкового вектора

Нехай X = (X 1 , … , X n) ⊤ : Ω → R n (\displaystyle X=(X_(1),\dots ,X_(n))^(\top )\colon \Omega \to \mathbb ( R) ^(n))- Випадковий вектор. Тоді за визначенням

M [ X ] = (M [ X 1 ] , … , M [ X n ]) ⊤ (\displaystyle M[X]=(M,\dots ,M)^(\top )),

тобто математичне очікування вектора визначається покомпонентно.

Математичне очікування перетворення випадкової величини

Нехай g: R → R (\displaystyle g\colon \mathbb (R) \to \mathbb (R) )- борелівська функція, така що випадкова величина Y = g (X) (\displaystyle Y=g(X))має кінцеве математичне очікування. Тоді для нього справедлива формула

M [ g (X) ] = ∑ i = 1 ∞ g (x i) pi , (\displaystyle M\left=\sum \limits _(i=1)^(\infty )g(x_(i))p_( i),)

якщо X (\displaystyle X)має дискретний розподіл;

M [ g (X) ] = ∫ − ∞ ∞ g (x) f X (x) d x , (\displaystyle M\left=\int \limits _(-\infty )^(\infty )\!g(x )f_(X)(x)\,dx,)

якщо X (\displaystyle X)має абсолютно безперервний розподіл.

Якщо розподіл P X (\displaystyle \mathbb(P) ^(X))випадкової величини X (\displaystyle X)загального вигляду, то

M [ g (X) ] = ∫ − ∞ ∞ g (x) P X (d x) . (\displaystyle M\left=\int \limits _(-\infty )^(\infty )\!g(x)\,\mathbb (P) ^(X)(dx).)

У спеціальному випадку, коли g (X) = X k (\displaystyle g(X)=X^(k)), математичне очікування M [g (X)] = M [X k] (\displaystyle M=M)називається k (\displaystyle k)-м моментом випадкової величини.

Найпростіші властивості математичного очікування

  • Математичне очікування числа є саме число.
M [a] = a (\displaystyle M[a]=a) a ∈ R (\displaystyle a\in \mathbb (R) )- Константа;
  • Математичне очікування лінійне, тобто
M [a X + b Y] = a M [X] + b M [Y] (\displaystyle M=aM[X]+bM[Y]), де X, Y (\displaystyle X,Y)- випадкові величини з кінцевим математичним очікуванням, а a , b ∈ R (\displaystyle a,b\in \mathbb (R) )- довільні константи; 0 ⩽ M [ X ] ⩽ M [ Y ] (\displaystyle 0\leqslant M[X]\leqslant M[Y]); M [X] = M[Y] (\displaystyle M[X]=M[Y]). M [ X Y ] = M [ X ] M [ Y ] (\displaystyle M=M[X]M[Y]).