Weekly expectation days. Mathematical expectation (Population mean) is

Probability theory is a special branch of mathematics that is studied only by students of higher educational institutions. Do you love calculations and formulas? Are you not afraid of the prospects of acquaintance with the normal distribution, the entropy of the ensemble, the mathematical expectation and the variance of a discrete random variable? Then this subject will be of great interest to you. Let's get acquainted with some of the most important basic concepts of this section of science.

Let's remember the basics

Even if you remember the simplest concepts of probability theory, do not neglect the first paragraphs of the article. The fact is that without a clear understanding of the basics, you will not be able to work with the formulas discussed below.

So, there is some random event, some experiment. As a result of the actions performed, we can get several outcomes - some of them are more common, others less common. The probability of an event is the ratio of the number of actually obtained outcomes of one type to the total number of possible ones. Only knowing the classical definition of this concept, you can begin to study the mathematical expectation and dispersion of continuous random variables.

Average

Back in school, in mathematics lessons, you started working with the arithmetic mean. This concept is widely used in probability theory, and therefore it cannot be ignored. The main thing for us this moment is that we will encounter it in the formulas for the mathematical expectation and variance of a random variable.

We have a sequence of numbers and want to find the arithmetic mean. All that is required of us is to sum everything available and divide by the number of elements in the sequence. Let we have numbers from 1 to 9. The sum of the elements will be 45, and we will divide this value by 9. Answer: - 5.

Dispersion

In scientific terms, variance is the average square of the deviations of the obtained feature values ​​from the arithmetic mean. One is denoted by a capital Latin letter D. What is needed to calculate it? For each element of the sequence, we calculate the difference between the available number and the arithmetic mean and square it. There will be exactly as many values ​​as there can be outcomes for the event we are considering. Next, we summarize everything received and divide by the number of elements in the sequence. If we have five possible outcomes, then divide by five.

The variance also has properties that you need to remember in order to apply it when solving problems. For example, if the random variable is increased by X times, the variance increases by X times the square (i.e., X*X). It is never less than zero and does not depend on shifting values ​​by an equal value up or down. Also, for independent trials, the variance of the sum is equal to the sum of the variances.

Now we definitely need to consider examples of the variance of a discrete random variable and the mathematical expectation.

Let's say we run 21 experiments and get 7 different outcomes. We observed each of them, respectively, 1,2,2,3,4,4 and 5 times. What will be the variance?

First, we calculate the arithmetic mean: the sum of the elements, of course, is 21. We divide it by 7, getting 3. Now we subtract 3 from each number in the original sequence, square each value, and add the results together. It turns out 12. Now it remains for us to divide the number by the number of elements, and, it would seem, that's all. But there is a catch! Let's discuss it.

Dependence on the number of experiments

It turns out that when calculating the variance, the denominator can be one of two numbers: either N or N-1. Here N is the number of experiments performed or the number of elements in the sequence (which is essentially the same thing). What does it depend on?

If the number of tests is measured in hundreds, then we must put N in the denominator. If in units, then N-1. The scientists decided to draw the border quite symbolically: today it runs along the number 30. If we conducted less than 30 experiments, then we will divide the amount by N-1, and if more, then by N.

A task

Let's go back to our example of solving the variance and expectation problem. We got an intermediate number of 12, which had to be divided by N or N-1. Since we conducted 21 experiments, which is less than 30, we will choose the second option. So the answer is: the variance is 12 / 2 = 2.

Expected value

Let's move on to the second concept, which we must consider in this article. Expected value is the sum of all possible outcomes multiplied by the corresponding probabilities. It is important to understand that the resulting value, as well as the result of calculating the variance, is obtained only once for the whole task, no matter how many outcomes it considers.

The mathematical expectation formula is quite simple: we take the outcome, multiply it by its probability, add the same for the second, third result, etc. Everything related to this concept is easy to calculate. For example, the sum of mathematical expectations is equal to the mathematical expectation of the sum. The same is true for the work. Not every quantity in probability theory allows such simple operations to be performed. Let's take a task and calculate the value of two concepts we have studied at once. In addition, we were distracted by theory - it's time to practice.

One more example

We ran 50 trials and got 10 kinds of outcomes - numbers 0 to 9 - appearing in varying percentages. These are, respectively: 2%, 10%, 4%, 14%, 2%, 18%, 6%, 16%, 10%, 18%. Recall that to get the probabilities, you need to divide the percentage values ​​by 100. Thus, we get 0.02; 0.1 etc. Let us present an example of solving the problem for the variance of a random variable and the mathematical expectation.

We calculate the arithmetic mean using the formula that we remember from elementary school: 50/10 = 5.

Now let's translate the probabilities into the number of outcomes "in pieces" to make it more convenient to count. We get 1, 5, 2, 7, 1, 9, 3, 8, 5 and 9. Subtract the arithmetic mean from each value obtained, after which we square each of the results obtained. See how to do this with the first element as an example: 1 - 5 = (-4). Further: (-4) * (-4) = 16. For other values, do these operations yourself. If you did everything right, then after adding everything you get 90.

Let's continue calculating the variance and mean by dividing 90 by N. Why do we choose N and not N-1? That's right, because the number of experiments performed exceeds 30. So: 90/10 = 9. We got the dispersion. If you get a different number, don't despair. Most likely, you made a banal error in the calculations. Double-check what you wrote, and for sure everything will fall into place.

Finally, let's recall the mathematical expectation formula. We will not give all the calculations, we will only write the answer with which you can check after completing all the required procedures. The expected value will be 5.48. We only recall how to carry out operations, using the example of the first elements: 0 * 0.02 + 1 * 0.1 ... and so on. As you can see, we simply multiply the value of the outcome by its probability.

Deviation

Another concept closely related to dispersion and mathematical expectation is the standard deviation. It is denoted either by the Latin letters sd, or by the Greek lowercase "sigma". This concept shows how, on average, values ​​deviate from the central feature. To find its value, you need to calculate Square root from dispersion.

If you plot a normal distribution and want to see the squared deviation directly on it, this can be done in several steps. Take half of the image to the left or right of the mode (central value), draw a perpendicular to the horizontal axis so that the areas of the resulting figures are equal. The value of the segment between the middle of the distribution and the resulting projection on the horizontal axis will be the standard deviation.

Software

As can be seen from the descriptions of the formulas and the examples presented, calculating the variance and mathematical expectation is not the easiest procedure from an arithmetic point of view. In order not to waste time, it makes sense to use the program used in higher education - it is called "R". It has functions that allow you to calculate values ​​for many concepts from statistics and probability theory.

For example, you define a vector of values. This is done as follows: vector<-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

Finally

Dispersion and mathematical expectation are without which it is difficult to calculate anything in the future. In the main course of lectures at universities, they are considered already in the first months of studying the subject. It is precisely because of the lack of understanding of these simple concepts and the inability to calculate them that many students immediately begin to fall behind in the program and later receive poor grades at the end of the session, which deprives them of scholarships.

Practice at least one week for half an hour a day, solving tasks similar to those presented in this article. Then, on any probability theory test, you will cope with examples without extraneous tips and cheat sheets.

Expected value

Dispersion continuous random variable X, the possible values ​​of which belong to the entire axis Ox, is determined by the equality:

Service assignment. The online calculator is designed to solve problems in which either distribution density f(x) , or distribution function F(x) (see example). Usually in such tasks it is required to find mathematical expectation, standard deviation, plot the functions f(x) and F(x).

Instruction. Select the type of input data: distribution density f(x) or distribution function F(x) .

The distribution density f(x) is given:

The distribution function F(x) is given:

A continuous random variable is defined by a probability density
(Rayleigh distribution law - used in radio engineering). Find M(x) , D(x) .

The random variable X is called continuous , if its distribution function F(X)=P(X< x) непрерывна и имеет производную.
The distribution function of a continuous random variable is used to calculate the probabilities of a random variable falling into a given interval:
P(α< X < β)=F(β) - F(α)
moreover, for a continuous random variable, it does not matter whether its boundaries are included in this interval or not:
P(α< X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Distribution density continuous random variable is called the function
f(x)=F'(x) , derivative of the distribution function.

Distribution Density Properties

1. The distribution density of a random variable is non-negative (f(x) ≥ 0) for all values ​​of x.
2. Normalization condition:

The geometric meaning of the normalization condition: the area under the distribution density curve is equal to one.
3. The probability of hitting a random variable X in the interval from α to β can be calculated by the formula

Geometrically, the probability that a continuous random variable X falls into the interval (α, β) is equal to the area of ​​the curvilinear trapezoid under the distribution density curve based on this interval.
4. The distribution function is expressed in terms of density as follows:

The distribution density value at the point x is not equal to the probability of taking this value; for a continuous random variable, we can only talk about the probability of falling into a given interval. Let )