Піраміда без верхівки. Піраміда

Відеоурок 2: Завдання на піраміду. Об'єм піраміди

Відеоурок 3: Завдання на піраміду. Правильна піраміда

Лекція: Піраміда, її основа, бічні ребра, висота, бічна поверхня; трикутна піраміда; правильна піраміда

Піраміда, її властивості

Піраміда- це об'ємне тіло, яке має в основі багатокутник, а всі її грані складаються з трикутників.

Приватним випадком піраміди є конус, в основі якого лежить коло.


Розглянемо основні елементи піраміди:


Апофема– це відрізок, який з'єднує вершину піраміди із серединою нижнього ребра бічної грані. Іншими словами, це висота грані піраміди.


На малюнку можна побачити трикутники ADS, ABS, BCS, CDS. Якщо уважно подивитися на назви, можна побачити, що кожен трикутник має у своїй назві одну загальну літеру – S. Тобто це означає, що всі бічні грані (трикутники) сходяться на одній точці, яка називається вершиною піраміди.


Відрізок OS, який з'єднує вершину з точкою перетину діагоналей основи (у випадку з трикутників – у точці перетину висот), називається заввишки піраміди.


Діагональним перетином називають площину, яка проходить через вершину піраміди, а також одну з діагоналей основи.


Оскільки бічна поверхня піраміди складається з трикутників, то для знаходження загальної площібічній поверхні необхідно знайти площі кожної грані та скласти їх. Кількість і форма граней залежить від форми та розмірів сторін багатокутника, що лежить у підставі.


Єдина площина у піраміді, якій не належить її вершина, називається основоюпіраміди.

На малюнку бачимо, що у основі лежить паралелограм, проте, може бути будь-який довільний багатокутник.

Властивості:


Розглянемо перший випадок піраміди, у якому вона має ребра однакової довжини:

  • Навколо основи такої піраміди можна описати коло. Якщо спроектувати вершину такої піраміди, то її проекція буде в центрі кола.
  • Кути при основі піраміди у кожної грані однакові.
  • При цьому достатньою умовою до того, що навколо основи піраміди можна описати коло, а так само вважати, що всі ребра різної довжини, можна вважати однакові кути між основою та кожним рубом граней.

Якщо Вам трапилася піраміда, у якої кути між бічними гранями та основою рівні, то справедливі такі властивості:

  • Ви зможете описати коло навколо основи піраміди, вершина якої проектується точно в центр.
  • Якщо провести у кожній бічній грані висоти до основи, вони будуть рівної довжини.
  • Щоб знайти площу бічної поверхні такої піраміди, достатньо знайти периметр основи та помножити його на половину довжини висоти.
  • S бп = 0,5P oc H.
  • Види піраміди.
  • Залежно від того, який багатокутник лежить в основі піраміди, вони можуть бути трикутними, чотирикутними та ін. Якщо в основі піраміди лежить правильний багатокутник (з рівними сторонами), то така піраміда називатиметься правильною.

Правильна трикутна піраміда

Визначення

Піраміда– це багатогранник, складений із багатокутника \(A_1A_2...A_n\) і \(n\) трикутників із загальною вершиною \(P\) (що не лежить у площині багатокутника) та протилежними їй сторонами, що збігаються зі сторонами багатокутника.
Позначення: \(PA_1A_2...A_n\).
Приклад: п'ятикутна піраміда \(PA_1A_2A_3A_4A_5\).

Трикутники \(PA_1A_2, \PA_2A_3\) тощо. називаються бічними гранямипіраміди, відрізки (PA_1, PA_2) і т.д. - бічними ребрами, багатокутник \(A_1A_2A_3A_4A_5\) – основою, точка \ (P \) - вершиною.

Висотапіраміди – це перпендикуляр, опущений із вершини піраміди на площину основи.

Піраміда, в основі якої лежить трикутник, називається тетраедром.

Піраміда називається правильноюякщо в її підставі лежить правильний багатокутник і виконано одну з умов:

\((a)\) бічні ребра піраміди рівні;

\((b)\) висота піраміди проходить через центр описаного біля основи кола;

\((c)\) бічні ребра нахилені до площини основи під однаковим кутом.

\((d)\) бічні грані нахилені до площини основи під однаковим кутом.

Правильний тетраедр– це трикутна піраміда, усі грані якої – рівні рівносторонні трикутники.

Теорема

Умови ((a), (b), (c), (d)) еквівалентні.

Доведення

Проведемо висоту піраміди \(PH\). Нехай \(\alpha\) - площина основи піраміди.


1) Доведемо, що з \((a)\) випливає \((b)\) . Нехай \(PA_1=PA_2=PA_3=...=PA_n\).

Т.к. \(PH\perp \alpha\) , то \(PH\) перпендикулярна будь-якій прямій, що лежить у цій площині, отже, трикутники – прямокутні. Отже, ці трикутники рівні за загальним катетом \(PH\) і гіпотенуз \(PA_1=PA_2=PA_3=...=PA_n\) . Отже, \(A_1H=A_2H=...=A_nH\) . Отже, точки \(A_1, A_2, ..., A_n\) знаходяться на однаковій відстані від точки \(H\), отже, лежать на одному колі з радіусом \(A_1H\). Це коло за визначенням і є описаним біля багатокутника \(A_1A_2...A_n\) .

2) Доведемо, що з \((b)\) випливає \((c)\).

\(PA_1H, PA_2H, PA_3H,..., PA_nH\)прямокутні та рівні за двома катетами. Отже, рівні та їх кути, отже, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\).

3) Доведемо, що з \((c)\) випливає \((a)\).

Аналогічно першому пункту трикутники \(PA_1H, PA_2H, PA_3H,..., PA_nH\)прямокутні та по катету та гострому кутку. Отже, рівні та його гіпотенузи, тобто \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Доведемо, що з \((b)\) випливає \((d)\).

Т.к. у правильному багатокутнику збігаються центри описаного та вписаного кола (взагалі кажучи, ця точка називається центром правильного багатокутника), то \(H\) – центр вписаного кола. Проведемо перпендикуляри з точки \(H\) на сторони основи: \(HK_1, HK_2\) і т.д. Це – радіуси вписаного кола (за визначенням). Тоді по ТТП (\(PH\) – перпендикуляр на площину, \(HK_1, HK_2\) тощо – проекції, перпендикулярні сторонам) похилі \(PK_1, PK_2\) тощо. перпендикулярні сторонам (A_1A_2, A_2A_3\) і т.д. відповідно. Отже, за визначенням \(\angle PK_1H, \angle PK_2H\)рівні кутам між бічними гранями та основою. Т.к. трикутники \(PK_1H, PK_2H, ...\) рівні (як прямокутні за двома катетами), то й кути \(\angle PK_1H, \angle PK_2H, ...\)рівні.

5) Доведемо, що з \((d)\) випливає \((b)\).

Аналогічно четвертому пункту трикутники \(PK_1H, PK_2H, ...\) рівні (як прямокутні по катету та гострому куту), отже, рівні відрізки \(HK_1=HK_2=...=HK_n\) . Значить, за визначенням, \(H\) - центр вписаної в основу кола. Але т.к. у правильних багатокутників центри вписаного та описаного кола збігаються, то \(H\) – центр описаного кола. Чтд.

Слідство

Бічні грані правильної піраміди – рівні рівнобедрені трикутники.

Визначення

Висота бічної грані правильної піраміди, проведена з її вершини, називається апофема.
Апофеми всіх бічних граней правильної піраміди рівні між собою і є також медіанами та бісектрисами.

Важливі зауваження

1. Висота правильної трикутної піраміди падає в точку перетину висот (або бісектрис, або медіан) основи (основа – правильний трикутник).

2. Висота правильної чотирикутної піраміди падає в точку перетину діагоналей основи (основа – квадрат).

3. Висота правильної шестикутної піраміди падає в точку перетину діагоналей основи (основа – правильний шестикутник).

4. Висота піраміди перпендикулярна будь-якій прямій, що лежить у підставі.

Визначення

Піраміда називається прямокутноїякщо одне її бічне ребро перпендикулярно площині основи.


Важливі зауваження

1. У прямокутної піраміди ребро, перпендикулярне до основи, є висотою піраміди. Тобто \(SR\) - висота.

2. Т.к. \(SR\) перпендикулярно будь-якій прямій з основи, то \(\triangle SRM, \triangle SRP\)- Прямокутні трикутники.

3. Трикутники \(\triangle SRN, \triangle SRK\)- теж прямокутні.
Тобто будь-який трикутник, утворений цим ребром та діагоналлю, що виходить з вершини цього ребра, що лежить у підставі, буде прямокутним.

\[(\Large(\text(Обсяг та площа поверхні піраміди)))\]

Теорема

Обсяг піраміди дорівнює третині твору площі основи на висоту піраміди: \

Наслідки

Нехай \(a\) - сторона основи, \(h\) - висота піраміди.

1. Об'єм правильної трикутної піраміди дорівнює \(V_(\text(прав.треуг.пір.))=\dfrac(\sqrt3)(12)a^2h\),

2. Об'єм правильної чотирикутної піраміди дорівнює \(V_(\text(прав.чотир.пір.))=\dfrac13a^2h\).

3. Об'єм правильної шестикутної піраміди дорівнює \(V_(\text(прав.шест.пір.))=\dfrac(\sqrt3)(2)a^2h\).

4. Об'єм правильного тетраедра дорівнює \(V_(\text(прав.тетр.))=\dfrac(\sqrt3)(12)a^3\).

Теорема

Площа бічної поверхні правильної піраміди дорівнює напівтвору периметра основи на апофему.

\[(\Large(\text(Усічена піраміда)))\]

Визначення

Розглянемо довільну піраміду \(PA_1A_2A_3...A_n\). Проведемо через деяку точку, що лежить на бічному ребрі піраміди, площину паралельно до основи піраміди. Ця площина розіб'є піраміду на два багатогранники, один з яких – піраміда (\(PB_1B_2...B_n\) ), а інший називається усічена піраміда(\(A_1A_2...A_nB_1B_2...B_n\)).


Усічена піраміда має дві основи – багатокутники \(A_1A_2...A_n\) і \(B_1B_2...B_n\) , які подібні один до одного.

Висота усіченої піраміди – це перпендикуляр, проведений з якоїсь точки верхньої основи до площини нижньої основи.

Важливі зауваження

1. Усі бічні грані усіченої піраміди – трапеції.

2. Відрізок, що з'єднує центри основ правильної усіченої піраміди (тобто піраміди, отриманої перетином правильної піраміди), є висотою.

Гіпотеза:ми вважаємо, що досконалість форми піраміди зумовлено математичними законами, закладеними у її форму.

Ціль:вивчивши піраміду як геометричне тіло, дати пояснення досконалості її форми.

Завдання:

1. Дати математичне визначенняпіраміді.

2. Вивчити піраміду як геометричне тіло.

3. Зрозуміти, які математичні знання єгиптяни заклали у своїх пірамідах.

Приватні питання:

1. Що таке піраміда як геометричне тіло?

2. Як можна пояснити унікальність форми піраміди з математичної точки зору?

3. Чим пояснюються геометричні чудеса піраміди?

4. Чим пояснюється досконалість форми піраміди?

Визначення піраміди.

ПІРАМІДА (від грец. pyramis, рід. п. pyramidos) - багатогранник, основа якого багатокутник, інші грані - трикутники, мають загальну вершину (малюнок). За кількістю кутів основи розрізняють піраміди трикутні, чотирикутні тощо.

ПІРАМІДА - монументальна споруда, що має геометричну форму піраміди (іноді також ступінчасту або баштоподібну). Пірамідами називають гігантські гробниці давньоєгипетських фараонів 3-2 тис. до н. е., а також давньоамериканські постаменти храмів (у Мексиці, Гватемалі, Гондурасі, Перу), пов'язані з космологічними культами.

Можливо, що грецьке слово “піраміда” походить від єгипетського виразу per-em-us, тобто від терміна, що означало висоту піраміди. Визначний російський єгиптолог У. Струве вважав, що грецьке “puram…j” походить від давньоєгипетського “p"-mr".

З історії. Вивчивши матеріал у підручнику "Геометрія" авторів Атанасяна. Бутузова та інших., ми дізналися, что: Многогранник, складений з п - косинця А1А2А3 … Аn і п трикутників РА1А2, РА2А3, …, РАnА1 – називається пірамідою. Багатокутник А1А2А3 … Аn – основа піраміди, а трикутники РА1А2, РА2А3, …, РАnА1 – бічні грані піраміди, Р – вершина піраміди, відрізки РА1, РА2,…, РАn – бічні ребра.

Проте таке визначення піраміди не завжди існувало. Наприклад, давньогрецький математик, автор теоретичних трактатів з математики Евклід, що дійшли до нас, піраміду визначає як тілесну фігуру, обмежену площинами, які від однієї площини сходяться до однієї точки.

Але це визначення піддавалися критиці вже у давнину. Так Герон запропонував таке визначення піраміди: "Це фігура, обмежена трикутниками, що сходяться в одній точці і основою якої є багатокутник".

Наша група, порівнявши ці визначення, дійшла висновку у тому, що вони немає чіткої формулювання поняття “основа”.

Ми досліджували ці визначення і знайшли визначення Адрієна Марі Лежандра, який у 1794 році у своїй праці "Елементи геометрії" піраміду визначає так: "Піраміда - тілесна фігура, утворена трикутниками, що сходяться в одній точці і закінчується на різних сторонах плоскої основи".

Нам здається, що останнє визначення дає чітке уявлення про піраміду, тому що в ньому йдеться про те, що основа – плоска. У підручнику 19 століття фігурувало ще одне визначення піраміди: "піраміда - тілесний кут, перетнутий площиною".

Піраміда як геометричне тіло.

Т. о. пірамідою називається багатогранник, одна з граней якого (основа) - багатокутник, інші грані (бічні) - трикутники, що мають одну загальну вершину (вершину піраміди).

Перпендикуляр, проведений з вершини піраміди до площини основи, називається заввишкиhпіраміди.

Крім довільної піраміди, існують правильна піраміда,в основі якої правильний багатокутник і усічена піраміда.

На малюнку – піраміда PABCD, ABCD – її основа, PO – висота.

Площею повної поверхні піраміди називається сума площ її граней.

Sповн = Sбік + Sосн,де Sбік- Сума площ бічних граней.

Об'єм піраміди знаходиться за формулою:

V=1/3Sосн. h, де Sосн. - площа основи, h- Висота.

Осі правильної піраміди називається пряма, що містить її висоту.
Апофема ST – висота бічної грані правильної піраміди.

Площа бічної грані правильної піраміди виражається так: Sбок. =1/2P h, де Р - периметр основи, h- Висота бічної грані (апофема правильної піраміди). Якщо піраміда перетнута площиною A'B'C'D', паралельною підставі, то:

1) бічні ребра та висота діляться цією площиною на пропорційні частини;

2) у перерізі виходить багатокутник A'B'C'D', подібний до основи;

https://pandia.ru/text/78/390/images/image017_1.png" width="287" height="151">

Підстави усіченої піраміди– подібні багатокутники ABCD та A`B`C`D`, бічні грані – трапеції.

Висотаусіченої піраміди – відстань між основами.

Обсяг усіченоїпіраміди знаходиться за формулою:

V=1/3 h(S+) Площа бічної поверхні правильної усіченої піраміди виражається так: Sбок. = ½(P+P') h, де P і P'- периметри основ, h- висота бічної грані (апофема правильної усіченої пірами

Перетин піраміди.

Перерізи піраміди площинами, що проходять через її вершину, є трикутниками.

Перетин, що проходить через два несусідні бічні ребра піраміди, називається діагональним перетином.

Якщо перетин проходить через точку на бічному ребрі і сторону основи, його слідом на площину підстави піраміди буде ця сторона.

Перетин, що проходить через точку, що лежить на межі піраміди, і заданий слід перерізу на площину основи, то будову треба проводити так:

· Знаходять точку перетину площини даної грані та сліду перерізу піраміди та позначають її;

· будують пряму проходить через задану точку та отриману точку перетину;

· Повторюють ці дії і для наступних граней.

що відповідає відношенню катетів прямокутного трикутника 4:3. Таке відношення катетів відповідає добре відомому прямокутному трикутнику зі сторонами 3:4:5, який називають "досконалим", "священним" або "єгипетським" трикутником. За свідченням істориків, "єгипетському" трикутнику надавали магічного сенсу. Плутарх писав, що єгиптяни порівнювали природу Всесвіту зі "священним" трикутником; вони символічно уподібнювали вертикальний катет чоловікові, основу - дружині, а гіпотенузу - тому, що народжується від обох.

Для трикутника 3:4:5 справедлива рівність: 32 + 42 = 52, яка виражає теорему Піфагора. Чи не цю теорему хотіли увічнити єгипетські жерці, зводячи піраміду на основі трикутника 3:4:5? Важко знайти більше вдалий прикладдля ілюстрації теореми Піфагора, яка була відома єгиптянам задовго до її відкриття Піфагором.

Таким чином, геніальні творці єгипетських пірамід прагнули вразити далеких нащадків глибиною своїх знань, і вони досягли цього, обравши як "головну геометричну ідею" для піраміди Хеопса - "золотий" прямокутний трикутник, а для піраміди Хефрена - "священний" або "єгипет" трикутник.

Дуже часто у своїх дослідженнях вчені використовують властивості пірамід із пропорціями Золотого перетину.

У математичному енциклопедичному словнику дається таке визначення Золотого перерізу – це гармонійне поділ, поділ у крайньому та середньому відношенні – поділ відрізка АВ на дві частини таким чином, що більша його частина АС є середнім пропорційним між усім відрізком АВ та меншою його частиною СВ.

Алгебраїчне знаходження Золотого перерізу відрізка АВ = азводиться до розв'язання рівняння а: х = х: (а - х), звідки х приблизно 0,62а. Відношення х можна виразити дробами 2/3, 3/5, 5/8, 8/13, 13/21 ... = 0,618, де 2, 3, 5, 8, 13, 21 - числа Фібоначчі.

Геометрична побудова Золотого перерізу відрізка АВ здійснюється так: у точці відновлюється перпендикуляр до АВ, на ньому відкладають відрізок ВЕ = 1/2 АВ, з'єднують А і Е, відкладають ДЕ = ВЕ і, нарешті, АС = АТ, тоді виконується рівність АВ: СВ = 2:3.

Золотий перетинчасто застосовується у витворах мистецтва, архітектури, зустрічається у природі. Яскравими прикладами є скульптура Аполлона Бельведерського Парфенон. При будівництві Парфенона використовувалося відношення висоти будівлі до його довжини, і це відношення дорівнює 0,618. Навколишні предмети також дають приклади Золотого перерізу, наприклад, палітурки багатьох книг мають відношення ширини і довжини близьке до 0,618. Розглядаючи розташування листя на загальному стеблі рослин, можна помітити, що між кожними двома парами листя третя розташована у місці Золотого перетину (слайди). Кожен із нас "носить" Золотий перетин із собою "в руках" - це відношення фаланг пальців.

Завдяки знахідці кількох математичних папірусів, єгиптологи дізналися дещо про давньоєгипетські системи обчислення та заходів. Завдання, що містилися в них, вирішувалися писарями. Одним із найвідоміших є «Ріндський математичний папірус». Вивчаючи ці завдання, єгиптологи дізналися, як древні єгиптяни справлялися з різними кількостями, що виникали при обчисленні заходів ваги, довжини та обсягу, у яких найчастіше використовувалися дроби, і як вони справлялися з кутами.

Стародавні єгиптяни використовували спосіб обчислення кутів на основі відношення висоти до основи прямокутного трикутника. Вони виражали будь-який кут мовою градієнта. Градієнт схилу виражався ставленням цілого числа, яке називалося «секед». У книзі «Математика за часів фараонів» Річард Піллінс пояснює: «Секед правильної піраміди – це нахил будь-якої з чотирьох трикутних граней до площини основи, що вимірюється енним числом горизонтальних одиниць на одну вертикальну одиницю підйому. Таким чином, ця одиниця виміру еквівалентна нашому сучасному котангенсу кута нахилу. Отже, єгипетське слово «секед» споріднене з нашим сучасному слову"градієнт"».

Числовий ключ до пірамід укладено щодо їх висоти до основи. У практичному плані - це найлегший спосіб виготовлення шаблонів, необхідних постійної перевірки правильності кута нахилу протягом усього будівництва піраміди.

Єгиптологи були б раді переконати нас у тому, що кожен фараон жадав висловити свою індивідуальність, тому й відмінності кутів нахилу кожної піраміди. Але могла бути інша причина. Можливо, всі вони хотіли втілити різні символічні асоціації, приховані у різних пропорціях. Однак кут піраміди Хафри (заснований на трикутнику (3: 4: 5) виявляється у трьох проблемах, представлених пірамідами в «Ріндському математичному папірусі»). Так що це ставлення було добре відоме стародавнім єгиптянам.

Щоб бути справедливими до єгиптологів, які стверджують, що стародавнім єгиптянам не був відомий трикутник 3:4:5, скажімо, що довжина гіпотенузи 5 ніколи не згадувалася. Але математичні задачіЩо стосується пірамід, завжди вирішуються на основі секеда кута - відношення висоти до основи. Оскільки довжина гіпотенузи ніколи не згадувалася, було зроблено висновок, що єгиптяни так ніколи і не вирахували довжину третьої сторони.

Відносини висоти до основи, використані в пірамідах Гізи, безсумнівно, були відомі давнім єгиптянам. Можливо, що ці відносини кожної піраміди були обрані довільно. Однак це суперечить тому значенню, яке надавалося числовому символізму у всіх видах єгипетського образотворчого мистецтва. Цілком імовірно, що такі відносини мали істотне значення, оскільки висловлювали конкретні релігійні ідеї. Іншими словами, весь комплекс Гізи підпорядковувався зв'язковому задуму, покликаному відобразити божественну тему. Це пояснило б чому проектувальники вибрали різні кути нахилу трьох пірамід.

У «Таємниці Оріона» Бьювел і Джілберт представили переконливі докази зв'язку пірамід Гізи із сузір'ям Оріона, зокрема із зірками Пояса Оріона. Осіріса, Ісіди та Гора.

ЧУДОСА "ГЕОМЕТРИЧНІ".

Серед грандіозних пірамід Єгипту особливе місце посідає Велика Піраміда фараона Хеопса (Хуфу). Перш ніж приступити до аналізу форми та розмірів піраміди Хеопса, слід згадати, якою системою заходів користувалися єгиптяни. У єгиптян було три одиниці довжини: "лікоть" (466 мм), що дорівнював семи "ладоням" (66,5 мм), яка, у свою чергу, дорівнювала чотирьом "пальцям" (16,6 мм).

Проведемо аналіз розмірів піраміди Хеопса (Мал.2), слідуючи міркуванням, наведеним у чудовій книзі українського вченого Миколи Васютинського” Золота пропорція(1990 р.).

Більшість дослідників сходяться на тому, що довжина сторони основи піраміди, наприклад, GFдорівнює L= 233,16 м. Ця величина відповідає майже точно 500 "ліктям". Повна відповідність 500 "ліктям" буде, якщо довжину "ліктя" вважати рівною 0,4663 м.

Висота піраміди ( H) оцінюється дослідниками по-різному від 146,6 до 148,2 м. І в залежності від прийнятої висоти піраміди змінюються всі відносини її геометричних елементів. У чому причина відмінностей щодо оцінки висоти піраміди? Справа в тому, що, строго кажучи, піраміда Хеопса є усіченою. Її верхній майданчик у наші дні має розмір приблизно 10 ' 10 м, а століття тому він дорівнював 6 ' 6 м. Очевидно, що вершину піраміди розібрали, і вона не відповідає початковій.

Оцінюючи висоту піраміди, необхідно враховувати такий фізичний фактор, як "осаду" конструкції. За тривалий час під впливом колосального тиску (що досягає 500 тонн на 1 м2 нижньої поверхні) висота піраміди зменшилася порівняно з початковою висотою.

Якою була початкова висота піраміди? Цю висоту можна відтворити, якщо знайти основну "геометричну ідею" піраміди.


Рисунок 2.

У 1837 р. англійський полковник Г. Вайз виміряв кут нахилу граней піраміди: він виявився рівним a= 51°51". Ця величина і сьогодні визнається більшістю дослідників. Вказаному значенню кута відповідає тангенс (tg a), рівний 1,27306. Ця величина відповідає відношенню висоти піраміди АСдо половини її заснування CB(Рис.2), тобто AC / CB = H / (L / 2) = 2H / L.

І ось тут дослідників очікував великий сюрприз!.png" width="25" height="24">= 1,272. a= 1,27306, бачимо, що це величини дуже близькі між собою. Якщо ж прийняти кут a= 51°50", тобто зменшити його всього на одну кутову хвилину, то величина aстане рівною 1,272, тобто збігається з величиною . Слід зазначити, що у 1840 р. Р. Вайз повторив свої виміри та уточнив, що значення кута a= 51 ° 50 ".

Ці виміри привели дослідників до наступної дуже цікавої гіпотези: в основу трикутника АСВ піраміди Хеопса було закладено відношення AC / CB = = 1,272!

Розглянемо тепер прямокутний трикутник ABC, в якому відношення катетів AC / CB= (Мал.2). Якщо тепер довжини сторін прямокутника ABCпозначити через x, y, z, а також врахувати, що відношення y/x= , то відповідно до теореми Піфагора, довжина zможе бути обчислена за формулою:

Якщо прийняти x = 1, y= https://pandia.ru/text/78/390/images/image027_1.png" width="143" height="27">


Рисунок 3."Золотий" прямокутний трикутник.

Прямокутний трикутник, в якому сторони відносяться як t:золотим" прямокутним трикутником.

Тоді, якщо прийняти за основу гіпотезу про те, що основною "геометричною ідеєю" піраміди Хеопса є "золотий" прямокутний трикутник, то легко можна обчислити "проектну" висоту піраміди Хеопса. Вона дорівнює:

H = (L/2) = 148,28 м.

Виведемо тепер деякі інші відносини для піраміди Хеопса, які з " золотої " гіпотези. Зокрема, знайдемо відношення зовнішньої площі піраміди до площі її основи. Для цього приймемо довжину катета CBза одиницю, тобто: CB= 1. Але тоді довжина сторони основи піраміди GF= 2, а площа основи EFGHбуде рівна SEFGH = 4.

Обчислимо тепер площу бічної грані піраміди Хеопса SD. Оскільки висота ABтрикутника AEFдорівнює t, то площа бічної грані буде рівна SD = t. Тоді сумарна площа всіх чотирьох бічних граней піраміди дорівнюватиме 4 t, А відношення сумарної зовнішньої площі піраміди до площі основи дорівнює золотій пропорції! Це і є - головна геометрична таємниця піраміди Хеопса!

До групи "геометричних чудес" піраміди Хеопса можна віднести реальні та надумані властивості відносин між різними вимірамиу піраміді.

Як правило, вони отримані в пошуках якихось "постійних", зокрема, числа "пі" (лудольфове число), що дорівнює 3,14159...; основи натуральних логарифмів "е" (Неперове число), що дорівнює 2,71828...; числа "Ф", числа "золотого перерізу", що дорівнює, наприклад, 0,618 ... і т. д.

Можна назвати, наприклад: 1) Властивість Геродота: (Висота)2 = 0,5 ст. осн. х Апофема; 2) Властивість В. Прайсу: Висота: 0.5 ст. осн = Корінь квадратний із "Ф"; 3) Властивість М. Ейста: Периметр основи: 2 Висота = "Пі"; в іншій інтерпретації – 2 ст. осн. : Висота = "Пі"; 4) Властивість Г. Ребера: Радіус вписаного кола: 0,5 ст. осн. = "Ф"; 5) Властивість К. Клеппіша: (Ст. осн.)2: 2(ст. осн. х Апофема) = (ст. осн. У. Апофема) = 2(ст. осн. х Апофема): ((2 ст. осн.X Апофема) + (ст. осн.)2). І тому подібне. Таких властивостей можна придумати безліч, особливо якщо підключити сусідні дві піраміди. Наприклад, як "Властивості А. Ареф'єва" можна згадати, що різниця обсягів піраміди Хеопса і піраміди Хефрена дорівнює подвоєному обсягу піраміди Мікеріна.

Багато цікавих положень, зокрема, про побудову пірамід по "золотому перерізу" викладено в книгах Д. Хембідж "Динамічна симетрія в архітектурі" та М. Гіка "Естетика пропорції в природі та мистецтві". Нагадаємо, що "золотим перетином" називається розподіл відрізка в такому відношенні, коли частина А в стільки разів більша від частини В, у скільки разів А найменша відрізка А + В. Відношення А/В при цьому дорівнює числу "Ф"==1,618. .. Вказується на використання "золотого перетину" не тільки в окремих пірамідах, а й у всьому комплексі пірамід у Гізі.

Найцікавіше, однак, те, що та сама піраміда Хеопса просто "не може" вмістити в себе стільки чудових властивостей. Взявши якесь властивість поодинці, його можна "підігнати", але всі разом вони не підходять - не збігаються, суперечать один одному. Тому, якщо, наприклад, при перевірці всіх властивостей, брати початково ту саму сторону основи піраміди (233 м), то висоти пірамід з різними властивостями також будуть різними. Іншими словами, існує якась "родина" пірамід, зовні подібних до Хеопсової, але відповідають різним властивостям. Зауважимо, що в "геометричних" властивостях нічого особливо чудового немає - багато виникає суто автоматично, з властивостей самої фігури. "Чудом" слід вважати лише щось явно неможливе для стародавніх єгиптян. Сюди, зокрема, відносять "космічні" дива, в яких виміри піраміди Хеопса або комплексу пірамід у Гізі зіставляються з деякими астрономічними вимірами та вказуються "рівні" числа: у мільйон разів, у мільярд разів менше, тощо. Розглянемо деякі "космічні" співвідношення.

Одне із тверджень таке: "якщо розділити бік підстави піраміди на точну довжину року, то отримаємо точно 10-мільйонну частку земної осі". Обчисли: розділимо 233 на 365, отримаємо 0,638. Радіус Землі 6378 км.

Інше твердження фактично обернено попередньому. Ф. Ноетлінг вказував, що й скористатися придуманим ним самим " єгипетським ліктем " , то сторона піраміди буде відповідати " найточнішої тривалості сонячного року, вираженої з точністю до однієї мільярдної дня " - 365.540.903.777.

Твердження П. Сміта: "Висота піраміди становить рівно одну мільярдну частку відстані від Землі до Сонця". Хоча зазвичай береться висота 146,6 м, Сміт брав її 148,2 м. За сучасними радіолокаційними вимірами велика піввісь земної орбіти становить 149,597.870 + 1,6 км. Така середня відстань від Землі до Сонця, але в перигелії воно на 5.000.000 кілометрів менше, ніж у афелії.

Останнє цікаве твердження:

"Чим пояснити, що маси пірамід Хеопса, Хефрена і Мікеріна ставляться одна до одної, як маси планет Земля, Венера, Марс?" Обчислимо. Маси трьох пірамід відносяться як: Хефрена – 0,835; Хеопса – 1,000; Мікеріна – 0,0915. Відносини мас трьох планет: Венера – 0,815; Земля – 1,000; Марс – 0,108.

Отже, незважаючи на скепсис, відзначимо відому стрункість побудови тверджень: 1) висота піраміди, як лінія, "що йде в простір" - відповідає відстані від Землі до Сонця; 2) сторона підстави піраміди, найближча "до субстрату", тобто до Землі, відповідає за земний радіус та земне звернення; 3) обсяги піраміди (читай – маси) відповідають відношенню мас найближчих до Землі планет. Схожий "шифр" простежується, наприклад, у бджолиній мові, проаналізованій Карлом Фрішем. Втім, поки що утримаємося від коментарів з цього приводу.

ФОРМА ПІРАМІД

Знаменита чотиригранна форма пірамід виникла не відразу. Скіфи робили поховання у вигляді земляних пагорбів – курганів. Єгиптяни ставили "пагорби" з каменю – піраміди. Вперше це сталося після об'єднання Верхнього та Нижнього Єгипту, у XXVIII столітті до нашої ери, коли перед засновником ІІІ династії фараоном Джосером (Зосером) стояло завдання зміцнення єдності країни.

І тут, на думку істориків, важливу роль у зміцненні центральної влади відіграла "нова концепція обожнювання" царя. Хоча царські поховання і відрізнялися більшою пишністю, вони в принципі не відрізнялися від гробниць придворних вельмож, являли собою ті самі споруди - мастаби. Над камерою з саркофагом, що містить мумію, насипався прямокутний пагорб з дрібного каміння, де ставилася потім невелика будівля з великих кам'яних блоків - "мастаба" (арабською - "лава"). На місці мастабу свого попередника, Санахта, фараон Джосер і поставив першу піраміду. Була вона ступінчастою і була зримим перехідним етапом від однієї архітектурної форми до іншої, від мастаби – до піраміди.

У такий спосіб "підвищив" фараона мудрець і архітектор Імхотеп, який згодом вважався чарівником і ототожнюваний греками з богом Асклепієм. Були споруджені шість мастаб поспіль. Причому перша піраміда займала площу 1125 х 115 метрів, із імовірною висотою 66 метрів (за єгипетськими заходами - 1000 "долонь"). Спочатку архітектор задумував побудувати мастабу, але не довгасту, а квадратну в плані. Пізніше її розширили, але, оскільки прибудову зробили нижче, утворилося як би два щаблі.

Така ситуація не задовольнила архітектора, і на верхньому майданчику величезної плоскої мастаби Імхотеп поставив ще три, що поступово зменшуються до верху. Усипальниця була під пірамідою.

Відомо ще кілька ступінчастих пірамід, але надалі будівельники перейшли до будівництва більш звичних для нас чотиригранних пірамід. Чому ж, однак, не тригранні чи, скажімо, восьмигранні? Непряма відповідь дає той факт, що практично всі піраміди чудово зорієнтовані по чотирьох сторонах світла, тому мають чотири сторони. До того ж піраміда була "домом", оболонкою чотирикутного похоронного приміщення.

Але чим було зумовлено кут нахилу граней? У книзі "Принцип пропорцій" цьому присвячено цілу главу: "Що могло зумовити кути нахилів пірамід". Зокрема, вказується, що "образ, якого тяжіють великі піраміди Стародавнього царства - трикутник з прямим кутом у вершині.

У просторі це напівоктаедр: піраміда, в якій ребра та сторони основи рівні, грані – рівносторонні трикутники". Певні розгляди дано з цього приводу в книгах Хембіджу, Гіка та інших.

Чим вигідний кут напівоктаедра? Згідно з описами археологів та істориків, деякі піраміди обвалилися під власним тягарем. Потрібен був "кут довговічності", кут, найбільш енергетично надійний. Чисто емпірично цей кут можна взяти з вершинного кута в купі сухого піску, що обсипається. Але, щоб отримати точні дані, потрібно скористатися моделлю. Взявши чотири міцно закріплені кулі, потрібно покласти на них п'яту і виміряти кути нахилу. Втім, і тут можна помилитися, тому рятує теоретичний розрахунок: слід з'єднати лініями центри куль (подумки). В основі вийде квадрат зі стороною, що дорівнює подвоєному радіусу. Квадрат буде якраз підставою піраміди, довжина ребер якої також дорівнюватиме подвоєному радіусу.

Таким чином щільна упаковка куль за типом 1:4 дасть нам правильний напівоктаедр.

Однак, чому ж багато пірамід, тяжіючи до подібної форми, проте не зберігають її? Мабуть, піраміди старіють. Всупереч знаменитій приказці:

"Все у світі бояться часу, а час бояться пірамід", будівлі пірамід повинні старіти, в них можуть і повинні відбуватися не тільки процеси зовнішнього вивітрювання, але і процеси внутрішньої "усадки", від чого піраміди, можливо, стають нижче. Усадка можлива і тому, що, як з'ясовано роботами Д. Давидовиця, стародавні єгиптяни застосовували технологію виготовлення блоків з вапняної крихти, простіше, з "бетону". Саме подібні процеси могли б пояснити причину руйнування Медумської піраміди, розташованої за 50 км на південь від Каїра. Їй 4600 років, розміри основи 146 х 146 м, висота – 118м. "Чому вона так понівечена? - Запитує В. Замаровський. - Звичайні посилання на згубний вплив часу і "використання каменю для інших будівель" тут не підходять.

Адже більшість її блоків і облицювальних плит і досі залишилися на місці, в руїнах біля її підніжжя". Як побачимо, ряд положень змушує замислитися навіть над тим, що і знаменита піраміда Хеопса теж "усохла". ...

Форму пірамід могло породити і наслідування: деяким природним зразкам, "нерукотворної досконалості", скажімо, деяких кристалів як октаедра.

Подібними кристалами могли виявитися кристали алмазу та золота. Характерно велика кількість ознак, що "перетинаються", для таких понять, як Фараон, Сонце, Золото, Алмаз. Скрізь - благородний, блискучий (блискучий), великий, бездоганний і таке інше. Подібності не випадкові.

Сонячний культ, як відомо, становив значної частини релігії Стародавнього Єгипту. "Хоч би як ми перекладали назву найбільшої з пірамід, - наголошується в одному з сучасних посібників- "Небосхил Хуфу" або "Небосхильний Хуфу", воно означало, що цар є сонцем". Якщо Хуфу у блиску своєї могутності уявив себе другим сонцем, то його син Джедеф-Ра став першим з єгипетських царів, хто став називати себе "сином Ра ", тобто сином Сонця. Сонце ж практично у всіх народів символізувалося "сонячним металом", золотом. "Великий диск яскравого золота" - так єгиптяни називали наше денне світило. Золото єгиптяни знали чудово, знали його самородні форми, де кристали золота можуть бути у вигляді октаедрів.

Як "зразок форм" цікавий тут і "сонячний камінь" – алмаз. Назва алмазу прийшла саме з арабського світу, "алмас" - найтвердіший, найтвердіший, незламний. Стародавні єгиптяни знали алмаз та його властивості дуже непогано. Згідно з деякими авторами, вони навіть використовували для буріння бронзові трубки з алмазними різцями.

Нині основним постачальником алмазів є Південна Африка, але на алмази багата і Африка Західна. Територію Республіки Малі там називають навіть "Діамантовим краєм". Тим часом саме на території Малі проживають наздоганяння, з якими прихильники гіпотези палеовізіту пов'язують чимало надій (див. далі). Алмази не могли спричинити контакти стародавніх єгиптян із цим краєм. Однак, так чи інакше, але, можливо, що саме копіюючи октаедри кристалів алмазу і золота, стародавні єгиптяни обожнювали тим самим "незламних" як алмаз і "блискучих" як золото фараонів, синів Сонця, порівнянних лише з чудовими творами природи.

Висновок:

Вивчивши піраміду як геометричне тіло, познайомившись з її елементами та властивостями, ми переконалися у справедливості думки про красу форми піраміди.

В результаті наших досліджень ми дійшли висновку, що єгиптяни, зібравши найцінніші математичні знання, втілили їх у піраміді. Тому піраміда воістину – найдосконаліший витвір природи та людини.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

«Геометрія: Навч. для 7 – 9 кл. загальноосвіт. установ \, та ін - 9-е вид.- М.: Просвітництво, 1999

Історія математики у шкільництві, М: «Освіта», 1982 р.

Геометрія 10-11 клас, М: «Освіта», 2000

Пітер Томпкінс "Таємниці великої піраміди Хеопса", М: "Центрополіграф", 2005 р.

Інтернет ресурси

http://veka-i-mig. *****/

http://tambov. *****/vjpusk/vjp025/rabot/33/index2.htm

http://www. *****/enc/54373.html


Визначення. Бічна грань- це трикутник, у якого один кут лежить у вершині піраміди, а протилежна сторона збігається зі стороною основи (багатокутника).

Визначення. Бічні ребра- це спільні сторони бічних граней. У піраміди стільки ребер, скільки кутів у багатокутника.

Визначення. Висота піраміди- Це перпендикуляр, опущений з вершини на основу піраміди.

Визначення. Апофема- Це перпендикуляр бічної грані піраміди, опущений з вершини піраміди до сторони основи.

Визначення. Діагональний переріз- це переріз піраміди площиною, що проходить через вершину піраміди та діагональ основи.

Визначення. Правильна піраміда- це піраміда, у якій основою є правильний багатокутник, а висота опускається у центр основи.


Об'єм та площа поверхні піраміди

Формули. Об'єм пірамідичерез площу основи та висоту:


Властивості піраміди

Якщо всі бічні ребра рівні, то навколо основи піраміди можна описати коло, а центр основи збігається із центром кола. Також перпендикуляр, опущений із вершини, проходить через центр основи (кола).

Якщо бічні ребра рівні, всі вони нахилені до площині підстави під однаковими кутами.

Бічні ребра рівні тоді, коли вони утворюють із площиною основи рівні кути або якщо навколо основи піраміди можна описати коло.

Якщо бічні грані нахилені до площини основи під одним кутом, то в основу піраміди можна вписати коло, а вершина піраміди проектується до її центру.

Якщо бічні грані нахилені до поверхні підстави під одним кутом, то апофеми бічних граней рівні.


Властивості правильної піраміди

1. Вершина піраміди рівновіддалена від усіх кутів основи.

2. Усі бічні ребра рівні.

3. Усі бічні ребра нахилені під однаковими кутами до основи.

4. Апофеми всіх бічних граней рівні.

5. Площі всіх бічних граней рівні.

6. Усі грані мають однакові двогранні (плоські) кути.

7. Навколо піраміди можна описати сферу. Центром описаної сфери буде точка перетину перпендикулярів, що проходять через середину ребер.

8. До піраміди можна вписати сферу. Центром вписаної сфери буде точка перетину бісектрис, що виходять із кута між ребром та основою.

9. Якщо центр вписаної сфери збігається з центром описаної сфери, то сума плоских кутів при вершині дорівнює π або навпаки, один кут дорівнює π/n, де n - це кількість кутів на підставі піраміди.


Зв'язок піраміди зі сферою

Навколо піраміди можна описати сферу тоді, коли на підставі піраміди лежить багатогранник навколо якого можна описати коло (необхідна і достатня умова). Центром сфери буде точка перетину площин, що проходять перпендикулярно через середини бічних ребер піраміди.

Навколо будь-якої трикутної чи правильної піраміди можна описати сферу.

У піраміду можна вписати сферу, якщо бісекторні площини внутрішніх двогранних кутів піраміди перетинаються в одній точці (необхідна та достатня умова). Ця точка буде осередком сфери.


Зв'язок піраміди з конусом

Конус називається вписаним у піраміду, якщо їх вершини збігаються, а основа конуса вписана в основу піраміди.

Конус можна вписати до піраміди, якщо апофеми піраміди рівні між собою.

Конус називається описаним навколо піраміди, якщо їх вершини збігаються, а основа конуса описана навколо основи піраміди.

Конус можна описати навколо піраміди, якщо всі бічні ребра піраміди рівні між собою.


Зв'язок піраміди з циліндром

Піраміда називається вписаною в циліндр, якщо вершина піраміди лежить на одній основі циліндра, а основа піраміди вписана в іншу основу циліндра.

Циліндр можна описати навколо піраміди, якщо навколо основи піраміди можна описати коло.


Визначення. Усічена піраміда (пірамідальна призма)- це багатогранник, який знаходиться між основою піраміди та площиною перерізу, паралельною основі. Таким чином піраміда має велику основу і меншу основу, яка подібна до більшої. Бічні грані є трапецією.

Визначення. Трикутна піраміда (чотиригранник)- це піраміда в якій три грані та основа є довільними трикутниками.

У чотиригранник чотири грані та чотири вершини та шість ребер, де будь-які два ребра не мають спільних вершин але не стикаються.

Кожна вершина складається з трьох граней та ребер, які утворюють тригранний кут.

Відрізок, що з'єднує вершину чотиригранника із центром протилежної грані називається медіаною чотиригранника(GM).

Бімедіаноюназивається відрізок, що з'єднує середини протилежних ребер, які не стикаються (KL).

Усі бімедіани та медіани чотиригранника перетинаються в одній точці (S). При цьому бімедіани діляться навпіл, а медіани щодо 3:1, починаючи з вершини.

Визначення. Похила піраміда- це піраміда, в якій одне з ребер утворює тупий кут (β) з основою.

Визначення. Прямокутна піраміда- це піраміда в якій одна з бічних граней перпендикулярна до основи.

Визначення. Гострокутна піраміда- це піраміда в якій апофема більше половини довжини сторони основи.

Визначення. Тупокутна піраміда- це піраміда в якій апофема менше половини довжини сторони основи.

Визначення. Правильний тетраедр- чотиригранник, у якого всі чотири грані - рівносторонні трикутники. Він є одним із п'яти правильних багатокутників. У правильного тетраедра всі двогранні кути (між гранями) та тригранні кути (при вершині) рівні.

Визначення. Прямокутний тетраедрназивається чотиригранник у якого прямий кут між трьома ребрами при вершині (ребра перпендикулярні). Три грані утворюють прямокутний тригранний куті грані є прямокутними трикутниками, а основа є довільним трикутником. Апофема будь-якої грані дорівнює половині боку основи, яку падає апофема.

Визначення. Рівногранний тетраедрназивається чотиригранник у якого бічні грані рівні між собою, а основа – правильний трикутник. У такого тетраедра грані це рівнобедрені трикутники.

Визначення. Ортоцентричний тетраедрназивається чотиригранник, у якого всі висоти (перпендикуляри), що опущені з вершини до протилежної грані, перетинаються в одній точці.

Визначення. Зіркова піраміданазивається багатогранник, у якого основою є зірка.

Визначення. Біпіраміда- багатогранник, що складається із двох різних пірамід (також можуть бути зрізані піраміди), що мають загальну основу, а вершини лежать по різні боки від площини основи.

піраміда. Усічена піраміда

Пірамідоюназивається багатогранник, одна з граней якого багатокутник ( підставу ), а всі інші грані – трикутники із загальною вершиною ( бічні грані ) (рис. 15). Піраміда називається правильною якщо її основою є правильний багатокутник і вершина піраміди проектується в центр основи (рис. 16). Трикутна піраміда, у якої всі ребра рівні, називається тетраедром .



Боковим рубомпіраміди називається сторона бічної грані, що не належить основи Висотою піраміди називається відстань від її вершини до площини основи. Усі бічні ребра правильної піраміди рівні між собою, всі бічні грані – рівні рівнобедрені трикутники. Висота бічної грані правильної піраміди, проведена з вершини, називається апофема . Діагональним перетином називається переріз піраміди площиною, що проходить через два бічні ребра, що не належать до однієї грані.

Площею бічної поверхніпіраміди називається сума площ усіх бічних граней. Площею повної поверхні називається сума площ всіх бічних граней та підстави.

Теореми

1. Якщо в піраміді всі бічні ребра рівнонахилені до площини основи, то вершина піраміди проектується в центр кола описаного біля основи.

2. Якщо в піраміді всі бічні ребра мають рівні довжини, то вершина піраміди проектується в центр кола описаного біля основи.

3. Якщо в піраміді всі грані рівнонахилені до площини основи, то вершина піраміди проектується в центр кола, вписаного в основу.

Для обчислення обсягу довільної піраміди вірна формула:

де V- Об `єм;

S осн– площа основи;

H- Висота піраміди.

Для правильної піраміди вірні формули:

де p– периметр основи;

h а– апофема;

H- Висота;

S повний

S бік

S осн– площа основи;

V- Об'єм правильної піраміди.

Усіченою пірамідоюназивається частина піраміди, укладена між основою та січною площиною, паралельною основі піраміди (рис. 17). Правильною усіченою пірамідою називається частина правильної піраміди, укладена між основою та січною площиною, паралельною основі піраміди.

Основиусіченої піраміди – подібні до багатокутники. Бічні грані - Трапеції. Висотою усіченої піраміди називається відстань між її основами. Діагоналлю Усіченої піраміди називається відрізок, що з'єднує її вершини, що не лежать в одній грані. Діагональним перетином називається переріз усіченої піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.


Для усіченої піраміди справедливі формули:

(4)

де S 1 , S 2 – площі верхньої та нижньої основ;

S повний- Площа повної поверхні;

S бік- Площа бічної поверхні;

H- Висота;

V- Об'єм усіченої піраміди.

Для правильної усіченої піраміди вірна формула:

де p 1 , p 2 – периметри основ;

h а- Апофема правильної усіченої піраміди.

приклад 1.У правильній трикутній піраміді двогранний кут при підставі дорівнює 60 º. Знайти тангенс кута нахилу бокового ребра до площини основи.

Рішення.Зробимо рисунок (рис. 18).


Піраміда правильна, отже на підставі рівносторонній трикутник і всі бічні грані рівні рівнобедрені трикутники. Двогранний кут при основі - це кут нахилу бічної грані піраміди до площини основи. Лінійним кутом буде кут aміж двома перпендикулярами: і. Вершина піраміди проектується в центрі трикутника (центр описаного кола та вписаного кола в трикутник АВС). Кут нахилу бокового ребра (наприклад SB) – це кут між самим ребром та його проекцією на площину основи. Для ребра SBцим кутом буде кут SBD. Щоб знайти тангенс необхідно знати катети SOі OB. Нехай довжина відрізка BDдорівнює 3 а. Крапкою Провідрізок BDділиться на частини: і З знаходимо SO: З знаходимо:

Відповідь:

приклад 2.Знайти об'єм правильної зрізаної чотирикутної піраміди, якщо діагоналі її основ дорівнюють см і см, а висота 4 см.

Рішення.Для знаходження об'єму зрізаної піраміди скористаємося формулою (4). Щоб знайти площі підстав необхідно знайти сторони квадратів-підстав, знаючи їх діагоналі. Сторони підстав рівні відповідно 2 см і 8 см. Значить площі підстав і Підставивши всі дані у формулу, обчислимо обсяг усіченої піраміди:

Відповідь: 112 см 3 .

Приклад 3.Знайти площу бічної грані правильної трикутної усіченої піраміди, сторони основ якої дорівнюють 10 см і 4 см, а висота піраміди 2 см.

Рішення.Зробимо рисунок (рис. 19).


Бічна грань цієї піраміди є рівнобокою трапецією. Для обчислення площі трапеції необхідно знати основи та висоту. Підстави дано за умовою, залишається невідомою лише висота. Її знайдемо з де А 1 Еперпендикуляр з точки А 1 на площину нижньої основи, A 1 D- перпендикуляр з А 1 на АС. А 1 Е= 2 див, оскільки це висота піраміди. Для знаходження DEзробимо додатково малюнок, на якому зобразимо вид зверху (рис. 20). Крапка Про– проекція центрів верхньої та нижньої основ. оскільки (див. рис. 20) і з іншого боку ОК– радіус вписаної в коло та ОМ- Радіус вписаної в колі:

MK = DE.

За теоремою Піфагора з

Площа бічної грані:


Відповідь:

Приклад 4.В основі піраміди лежить рівнобока трапеція, основи якої аі b (a> b). Кожна бічна грань утворює з площиною основи піраміди кут рівний j. Знайти площу повної поверхні піраміди.

Рішення.Зробимо малюнок (рис. 21). Площа повної поверхні піраміди SABCDдорівнює сумі площ та площі трапеції ABCD.

Скористаємося твердженням, що й усі грані піраміди рівнонахилені до площині основи, то вершина проектується у центр вписаної основу окружности. Крапка Про- Проекція вершини Sна підставу піраміди. Трикутник SODє ортогональною проекцією трикутника CSDна площину основи. По теоремі про площу ортогональної проекції плоскої фігури отримаємо:


Аналогічно і значить Таким чином, завдання звелося до знаходження площі трапеції. АВСD. Зобразимо трапецію ABCDокремо (рис.22). Крапка Про- Центр вписаної в трапецію кола.


Так як в трапецію можна вписати коло, то або з теореми Піфагора маємо