Из за чего образуются волны. Как образуются волны? Виды морских волн

Волны, которые мы привыкли видеть на поверхности моря, образуются главным образом под действием ветра. Однако волны могут возникать и по другим причинам, тогда они называются;

Приливные, образующиеся под действием приливообразующих сил Луны и Солнца;

Барические, возникающие при резких изменениях атмосферного давления;

Сейсмические (цунами), образующиеся в результате землетрясения или извержения вулканов;

Корабельные, возникающие при движении судна.

Ветровые волны являются преобладающими на поверхности морей и океанов. Волны приливные, сейсмические, барические и корабельные существенного влияния на плавание судов в открытом океане не оказывают, поэтому на их описании мы останавливаться не будем. Ветровое волнение - один из основных гидрометеорологических факторов, определяющих безопасность и экономическую эффективность мореплавания, так как волна, набегая на судно, обрушивается на него, раскачивает, бьет в борт, заливает палубы и надстройки, уменьшает скорость хода. Качка создает опасные крены, затрудняет определение места судна и сильно изнуряет команду. Кроме потери скорости, волнение вызывает рыскание и уклонение судна с заданного курса, и для удержания его требуется постоянная перекладка руля.

Ветровым волнением называется процесс формирования, развития и распространения вызванных ветром волн на поверхности моря. Ветровому волнению присущи две основные черты. Первая черта - нерегулярность: неупорядоченность размеров и форм волн. Одна волна не повторяет другую, за большой может следовать малая, а может и еще большая; каждая отдельная волна непрерывно меняет свою форму. Гребни волн перемещаются не только в направлении ветра, но и в других направлениях. Такая сложная структура возмущенной поверхности моря объясняется вихревым, турбулентным характером ветра, образующего волны. Вторая черта волнения заключается в быстрой изменчивости его элементов во времени и пространстве и связана также с ветром. Однако размеры волн зависят не только от скорости ветра, существенное значение имеет продолжительность его действия, площадь и конфигурация водной поверхности. С точки зрения практики нет необходимости знать элементы каждой отдельно взятой волны или каждого волнового колебания. Поэтому изучение волнения сводится в конечном итоге к выявлению статистических закономерностей, которые численно выражаются зависимостями между элементами волн и определяющими их факторами.

3.1.1. Элементы волн

Каждая волна характеризуется определенными элементами,

Общими элементами для волн являются (рис. 25):

Вершина - наивысшая точка гребня волны;

Подошва - наинизшая точка ложбины волны;

Высота (h) - превышение вершины волны;

Длина (Л)-горизонтальное расстояние между вершинами двух смежных гребней на волновом профиле, проведенном в генеральном направлении распространения волн;

Период (т) - интервал времени между прохождением двух смежных вершин волн через фиксированную вертикаль; другими словами, это промежуток времени, в течение которого волна проходит расстояние, равное своей длине;

Крутизна (е) - отношение высоты данной волны к ее длине. Крутизна волны в различных точках волнового профиля различна. Средняя крутизна волны определяется отношением:

Рис. 25. Основные элементы волн.


Для практики важное значение имеет наибольший уклон, который приближенно равен отношению высоты волны h к ее полудлине λ/2


- скорость волны с - скорость перемещения гребня волны в направлении ее распространения, определяемая за короткий интервал времени порядка периода волны;

Фронт волны - линия на плане взволнованной поверхности, проходящая по вершинам гребня данной волны, которые определяются по множеству волновых профилей, проведенных параллельно генеральному направлению распространения волн.

Для мореплавания наибольшее значение имеют такие элементы волн, как высота, период, длина, крутизна и генеральное направление перемещения волн. Все они зависят от параметров ветрового потока (скорости и направления ветра), его протяженности (разгона) над морем и продолжительности его действия.

В зависимости от условий образования и распространения ветровые волны можно подразделить на четыре типа.

Ветровые - система волн, находящаяся в момент наблюдения под воздействием ветра, которым она вызвана. Направления распространения ветровых волн и ветра на глубокой воде обычно совпадают или же различаются не более чем на четыре румба (45°).

Ветровые волны характерны тем, что подветренный склон их круче, чем наветренный, поэтому верхушки гребней обычно заваливаются, образуя пену, или даже срываются сильным ветром. При выходе волн на мелководье и подходе их к берегу направления распространения волн и ветра могут различаться более чем на 45°.

Зыбь - вызванные ветром волны, распространяющиеся в области волнообразования после ослабления ветра и/или изменения его направления, или вызванные ветром волны, пришедшие из области волнообразования в другую область, где дует ветер с другой скоростью и/или другим направлением. Частный случай зыби, распространяющейся при отсутствии ветра носит название мертвой зыби.

Смешанные - волнение, образующееся в результате взаимодействия ветровых волн и зыби.

Трансформация ветровых волн - изменение структуры ветровых волн при изменении глубины. В этом случае форма волн искажается, они становятся круче и короче и при небольшой глубине, не превышающей высоты волны, гребни последних опрокидываются, и волны разрушаются.

По своему внешнему виду ветровые волны характеризуются разными формами.

Рябь - начальная форма развития ветрового волнения, возникающая под действием слабого ветра; гребни волн при ряби напоминают чешую.

Трехмерное волнение - совокупность волн, средняя длина гребня которых в несколько раз превышает среднюю длину волны.

Регулярное волнение - волнение, в котором форма и элементы всех волн одинаковы.

Толчея - беспорядочное волнение, возникающее вследствие взаимодействия волн, бегущих в разных направлениях.

Волны, разбивающиеся над банками, рифами или камнями, носят название бурунов. Волны, обрушивающиеся в прибрежной зоне, называются прибоем. У крутых берегов и у портовых сооружений прибой имеет форму взброса.

Волны на поверхности моря подразделяются на свободные, когда сила, вызвавшая их, прекращает действовать и волны свободно перемещаются, и вынужденные, когда действие силы, вызвавшей образование волн, не прекращается.

По изменчивости элементов волн во времени их разделяют на установившиеся, т. е, ветровое волнение, в котором статистические характеристики волн не изменяются во времени, и развивающиеся или затухающие - изменяющие свои элементы во времени.

По форме волны делятся на двухмерные - совокупность волн, средняя длина гребня которых во много раз больше средней длины волн, трехмерные - совокупность волн, средняя длина гребня которых в несколько раз превышает длину волн, и уединенные, имеющие только куполообразный гребень без подошвы.

В зависимости от отношения длины волны к глубине моря волны подразделяются на короткие, длина которых значительно меньше глубины моря, и длинные, длина которых больше глубины моря.

По характеру перемещения формы волны они бывают поступательные, у которых наблюдается видимое перемещение формы волны, и стоячие - не имеющие перемещения. По тому, как располагаются волны, их делят на поверхностные и внутренние. Внутренние волны образуются на той или иной глубине на поверхности раздела между слоями воды разной плотности.

3.1.2. Методы расчета элементов волн

При изучении морского волнения используются некоторые теоретические положения, объясняющие те или иные стороны этого явления. Общие законы строения волн и характера движения их отдельных частиц рассматриваются трохоидальной теорией волн. Согласно этой теории, отдельные частицы воды в поверхностных волнах движутся по замкнутым эллипсоидным орбитам, совершая полный оборот за время, равное периоду волны т.

Вращательное движение последовательно расположенных частиц воды, сдвинутых на фазовый угол в начальный момент движения, создает видимость поступательного движения: отдельные частицы движутся по замкнутым орбитам, в то время как профиль волны перемещается поступательно в направлении ветра. Трохоидальная теория волн позволила математически обосновать строение отдельных волн и связать между собой их элементы. Были получены формулы, позволяющие рассчитать отдельные элементы волн


где g -ускорение свободного падения, Длина волны К скорость ее распространения С и период t связаны между собой зависимостью К=Сх.

Следует отметить, что трохоидальная теория волн справедлива только для правильных двухмерных волн, которые наблюдаются в случае свободных ветровых волн - зыби. При трехмерном ветровом волнении орбитальные пути частиц не являются замкнутыми круговыми орбитами, так как под воздействием ветра возникает горизонтальный перенос вод на поверхности моря в направлении распространения волны.

Трохоидальная теория морских волн не вскрывает процесса их развития и затухания, а также механизма передачи энергии от ветра к волне. Между тем, решение именно этих вопросов необходимо с целью получения надежных зависимостей для расчета элементов ветровых волн.

Поэтому развитие теории морских волн пошло по пути разработки теоретических и эмпирических связей между ветром и волнением с учетом разнообразия реальных морских ветровых волн и нестационарности явления, т. е. с учетом их развития и затухания.

В общем виде формулы для расчета элементов ветровых волн могут быть выражены в виде функции от нескольких переменных

H, t, Л,C=f(W , D t, H),

Где W - скорость ветра; D - разгон , t - продолжительность действия ветра; Н - глубина моря.

Для мелководных районов морей для расчета высоты и длины волн можно использовать зависимости


Коэффициенты а и z переменны и зависят от глубины моря

А = 0,0151H 0,342 ; z = 0,104H 0,573 .

Для открытых районов морей элементы волн, обеспеченность высот которых составляет 5%, и средние значения длины волн рассчитываются по зависимостям:

H = 0,45 W 0,56 D 0,54 A,

Л = 0,3lW 0,66 D 0,64 A.

Коэффициент А вычисляется по формуле


Для открытых районов океана элементы волн рассчитываются по следующим формулам:


где е - крутизна волны при малых разгонах, D ПР - предельный разгон, км. Максимальную высоту штормовых волн можно рассчитать по формуле


где hmax - максимальная высота волн, м, D - длина разгона, мили.

В Государственном океанографическом институте на основании спектральной статистической теории волнения были получены графические связи между элементами волн и скоростью ветра, продолжительностью его действия и длиной разгона. Эти зависимости следует считать наиболее надежными, дающими приемлемые результаты, на основе которых в Гидрометцентре СССР (В. С. Красюк) были построены номограммы для расчета высоты волн. Номограмма (рис. 26) разделена на четыре квадранта (I-IV) и состоит из серии графиков, расположенных в определенной последовательности.

В квадранте I (отсчет ведется из нижнего правого угла) номограммы дана градусная сетка, каждое деление которой (по горизонтали) соответствует 1° меридиана на данной широте (от 70 до 20° с. ш.) для карт масштаба 1:15 000000 полярной стереографической проекции. Градусная сетка необходима для перевода расстояния между изобарами п и радиуса кривизны изобар R, измеренных на картах другого масштаба, в масштаб 1:15 000000. В этом случае мы определяем расстояние между изобарами п и радиус кривизны изобар R в градусах меридиана на данной широте. Радиус кривизны изобар R - радиус Окружности, с которой участок изобары, проходящей через точку, для которой ведется расчет, или вблизи нее имеет наибольшее соприкосновение. Определяется он с помощью измерителя путем подбора таким образом, чтобы дуга, проведенная из найденного центра, совпадала с данным участком изобары. Затем на градусной сетке откладываем измеренные величины на данной широте, выраженные в градусах меридиана, и раствором циркуля определяем радиус кривизны изобар и расстояние между изобарами, соответствующее масштабу 1:15000 000.


В квадранте II номограммы приведены кривые, выражающие зависимость скорости ветра от барического градиента и географической широты места (каждая кривая соответствует определенной широте- от 70 до 20° с. ш.). Для перехода от рассчитанного градиентного ветра к ветру, дующему вблизи поверхности моря (на высоте 10 м), была выведена поправка, учитывающая стратификацию приводного слоя атмосферы. При расчетах для холодной части года (устойчивая стратификация t w 2°С)-коэффициент 0,6.


Рис. 26. Номограмма для расчета элементов волн и скорости ветра по картам приземного поля давления, где изобары проведены с интервалом 5 мбар (а) и 8 мбар (б). 1 - зима, 2 - лето.


В квадранте III производится учет влияния кривизны изобар на скорость геострофического ветра. Кривые, соответствующие различным значениям радиуса кривизны (1, 2, 5 и т. д.), даны сплошными (зима) и штриховыми (лето) линиями. Знак оо означает, что изобары прямолинейны. Обычно при радиусе кривизны, превышающей 15°, учета кривизны при расчетах не требуется. По оси абсцисс, разделяющей кйадранты III и IV, определяется скорость ветра W для данной точки.

В квадранте IV расположены кривые, позволяющие по скорости ветра, разгону или продолжительности действия ветра определять высоту так называемых значительных волн (h 3H), имеющих обеспеченность 12,5%.

Если имеется возможность при определении высоты волн использовать не только данные о скорости ветра, но и о разгоне и продолжительности действия ветра, расчет выполняется по разгону и продолжительности действия ветра (в часах). Для этого из квадранта III номограммы опускаем перпендикуляр не до кривой разгона, а до кривой продолжительности действия ветра (6 или 12 ч). Из полученных результатов (по разгону и продолжительности) берется меньшее значение высоты волны.

Расчет с помощью предлагаемой номограммы можно производить лишь для районов «глубокого моря», т. е. для районов, где глубина моря не меньше половины длины волны. При разгоне, превышающем 500 км, или продолжительности действия ветра больше 12 ч используется зависимость высот волн от ветра, соответствующая океанским условиям (утолщенная кривая в квадранте IV).

Таким образом, для определения высоты волн в данной точке необходимо выполнить следующие операции:

А) найти радиус кривизны изобары R, проходящий через данную точку или вблизи нее (с помощью циркуля путем подбора). Радиус кривизны изобар определяется только в случае циклонической кривизны (в циклонах и ложбинах) и выражается в градусах меридиана;

Б) определить разность давления п путем измерения расстояния между соседними изобарами в районе выбранной точки;

В) по найденным значениям R и п в зависимости от времени года находим скорость ветра W;

Г) зная скорость ветра W и разгон D или продолжительность действия ветра (6 или 12 ч), находим высоту значительных волн (h 3H).

Разгон находится следующим образом. От каждой точки, для которой ведется расчет высоты волн, в направлении против ветра проводится линия тока до тех пор, пока ее направление не изменится по отношению к начальному на угол 45° или не достигнет берега, или кромки льда. Приблизительно это и будет разгон или путь ветра, на протяжении которого должны формироваться (волны, приходящие в данную точку.

Продолжительность действия ветра определяется как время, в течение которого направление ветра неизменно или отклоняется от первоначального не более чем на ±22,5°.

По номограмме на рис. 26 а можно определить высоту волны по карте приземного поля давления, на которой изобары проведены через 5 мбар. Если изобары проведены через 8 мбар, то следует использовать номограмму, приведенную на рис. 26 б.

Период и длину волны можно рассчитать по данным о скорости ветра и высоте волны. Приближенный расчет периода волн может быть произведен по графику (рис. 27), на котором представлена зависимость между периодами и высотой ветровых волн при различных скоростях ветра (W). Длина волн определяется по ее периоду и глубине моря в данной точке по графику (рис. 28).

Волны появляются благодаря ветру. Бури образуют ветра, которые воздействуют на поверхность воды, в результате чего возникает зыбь Точно также, как образуется рябь в твоей чашечке кофе после серфинга, когда ты на него дуешь. Сам же ветер можно увидеть на картах прогноза погоды: это зоны низкого давления. Чем больше их концентрация, тем сильнее будет ветер. Малые (капиллярные) волны изначально движутся в направлении, в котором дует ветер. Чем сильнее и дольше дует ветер, тем больше его воздействие на поверхность воды. Со временем волны начинают увеличиваться в размере. По мере того, как ветер продолжает дуть, и порожденные им волны и далее подвергаются его воздействию, малые волны начинают расти. На них ветер оказывает большее воздействие, чем на спокойную поверхность воды. Размер волны зависит от скорости ветра, который ее образует. Ветер, дующий с какой-то постоянной скоростью, сможет генерировать волну определенных размеров. И как только волна приобретает максимально возможные размеры при данном ветре, она становится «полностью сформированной». Генерируемые волны имеют различные скорости и периоды волны. (Смотри более подробно в разделе волновая терминология) Волны с большим периодом двигаются быстрее и преодолевают большие расстояния, чем их более медленные собратья. По мере отдаления от источника ветра (распространения) волны образуют линии прибоев (свеллов), которые неизбежно накатывают на берег. Наверное, ты уже знаком с понятием «wave set» (вейв сет)! Волны, на которые больше не влияет ветер, породивший их, называются донными волнами (groundswell). Это именно то, за чем охотятся серферы! Что влияет на размер прибоя (свелла)? Есть три основных фактора, влияющие на размер волн в открытом море: Скорость ветра – чем она больше, тем крупнее будет волна. Продолжительность ветра – аналогично предыдущему. Fetch (фетч, «область покрытия»)– опять же, чем больше область покрытия, тем крупнее образуется волна. Как только воздействие ветра на них прекращается, волны начинают терять свою энергию. Они буду двигаться до того момента, как выступы морского дна, либо другие препятствия на их пути (крупный остров к примеру) не поглотят всю энергию. Существует несколько факторов, влияющих на размер волны в конкретном месте прибоя. Среди них: Направление прибоя (свелла) – позволит ли оно попасть свеллув нужное нам место? Океанское дно – свелл, движущийся из глубины океана на риф, образует крупные волны с бочками внутри. Неглубокий длинный выступ, тянущийся к берегу замедлит волны, и они утратят свою энергию. Приливы – некоторые виды спорта полностью от него зависят. Узнай больше в разделе как появляются лучшие волны

Откуда берутся гигантские волны?

Чем обусловлено появление большинства волн в океанах и морях, об энергии волн и о самых гигантских волнах.

Основная причина появления океанических волн – влияние ветров на водную поверхность. Скорость некоторых волн может развиться и даже превысить 95 км в час. Гребень от гребня может быть разделен 300-ми метрами. Они проходят по поверхности океана огромные расстояния. Большая часть их энергии расходуется еще до того, как они достигнут суши, может быть, минуя при этом самое глубокое место в мире – Марианскую впадину. Да и размеры их становятся меньше. А если ветер успокаивается, то и волны становятся более спокойными и гладкими.

Если в океане сильный бриз, то высота волн обычно достигает 3 метров. Если ветер начинает становиться штормовым, то они могут стать 6 м. При сильном штормовом ветре их высота уже может быть выше 9 м и они становятся крутыми, с обильными брызгами.

Во время шторма, когда в океане видимость затрудняется, высота волн превышает 12 метров. А вот во время сильнейшего шторма, когда море сплошь покрыто пеной и даже небольшие корабли, яхты или суда (а не то, что рыба, даже самая большая рыба ) могут просто затеряться между 14-ми волнами.

Удары волн

Большие волны постепенно размывают берега. Маленькие волны могут потихоньку выровнять пляж с наносом. Волны ударяются о берега под определенным углом, поэтому, нанос, смытый в одном месте, вынесется и будет отложен на другом.

Во время сильнейших ураганов или штормов могут произойти такие изменения, что громадные участки берега могут значительно трансформироваться внезапно.

Да и не только берега. Когда-то, в очень далеком от нас 1755 году, волны 30-ти метровой высоты снесли с лица земли Лиссабон, погрузив под тоннами воды постройки города, превратив их в руины и погубив более полумиллиона человек. И случилось это в большой католический праздник – День всех святых.

Волны-убийцы

Самые большие волны обычно наблюдают по Игольному течению (или течению Агульяс), что у берегов Южной Африки. Здесь же была отмечена и самая высокая волна в океане . Ее высота составила 34 м. А вообще самая большая из когда-либо замеченных волн, была зафиксирована лейтенантом Фредериком Марго на судне, держащем свой путь из Манилы в Сан-Диего. Было это 7 февраля 1933 года. Высота той волны тоже была около 34 метров. Таким волнам моряки дали прозвище «волны-убийцы». Как правило, необыкновенно высокой волне всегда предшествует такая же глубокая впадина (или провал). Известно, что в таких впадинах-провалах исчезло большое количество кораблей. Кстати, волны, образующиеся во время во время приливов, с приливами-то и не связаны. Они бывают вызваны подводным землетрясением или извержением вулкана на морском или океаническом дне, которое создает перемещение огромных масс воды и, как следствие, большие волны.

НОД по экологическому образованию детей 6-7 лет

с элементами исследовательской деятельности

Тема: Откуда берутся волны на море?

Цель НОД: продолжать знакомить детей со свойствами воздуха. Дать детям понятие о движение воздуха. Дать детям возможность самим разрешить проблемную ситуацию в процессе исследовательской деятельности. Развивать мыслительную активность, наблюдательность. Продолжать формировать у детей познавательный интерес к природе.

Методы и приёмы: детское экспериментирование, игровой приём, беседа, метод моделирования, проблемной ситуации.

Материал: ванночки с водой, краски, кисточки для каждого ребёнка. Бумажные кораблики и веер по количеству детей. Дневники наблюдений, карандаши, «пиратская карта», мешочек с «сокровищами» - ракушками, камушками и пр.

Ход НОД:

Ребята, давайте поиграем в одну очень интересную игру:

Я буду художником, а вы красками. С помощью вас я буду рисовать разные картины.

Я решила нарисовать море. Все ребята, кроме Саши, встаньте рядом друг с другом и вытяните вперёд руки, вы будете морем, а Саша корабликом. На этой моей картине нарисовано очень спокойное море, лишь по его поверхности пробегает лёгкая рябь. По морю плывёт кораблик: (дети стоят спокойно, слегка шевеля пальцами рук, ребёнок изображающий кораблик, «проплывает» мимо детей). Вдруг на море появились совсем не большие волны. Давайте попробуем нарисовать эти волны. (Дети выполняют ладонями рук лёгкие волнообразные движения, ребёнок – кораблик проплывает по морю, как бы покачиваясь на волнах). Теперь я решила нарисовать море во время бури. Покажите мне, каким будет море во время бури, какие на нём будут волны. Нарисуйте эту картину. (Дети делают энергичные волнообразные движения руками, а кораблик плывёт сильно раскачиваясь на волне).

Ну что же, вы сумели нарисовать настоящий морской шторм.

А как вы думаете, ребята, откуда на море появляются волны? (Волны появляются из - за ветра).

А хотите проверить так ли это на самом деле? (Да).

Тогда давайте ненадолго станем с вами учёными и проведём несколько опытов, которые помогут нам точно узнать, откуда берутся волны на море. Пройдите в нашу лабораторию и займите места за своими рабочими столами.

(Дети садятся за столы, на которых стоит оборудование для проведения опытов).

Для того чтобы начать наши опыты, нам нужно море. Каждый из вас сделает своё море. Возьмите миски и налейте в них воды из бутылок, которые стоят на ваших столах. У всех получилось одинаковое море? (Да).

А как, с помощью красок, которые вы видите на своих столах, мы с вами можем сделать, чтобы ваши моря стали разными? (Добавить в воду краску).

Что тогда случится с водой? (Она станет цветной).

Давайте попробуем это сделать. (Дети окрашивают воду разными цветами красок)

Почему ваша вода стала цветной? (Предположения детей. Если дети затрудняются ответить, то вспомнить ранее проведённые опыты с водой и подвести их к выводу, что вода не имеет цвета и окрашивается в любой цвет).

Какими теперь стали ваши моря? (Моря получились разного цвета).

Теперь у нас с вами есть чёрное, красное, жёлтое, синее море.

Посмотрите, есть ли сейчас на вашем море волны? Или море спокойное, безмятежное? (Волн нет. Море спокойное, безмятежное).

А теперь подуйте тихонько на ваше море.

Что произошло с морем? (Появились волны).

Отчего же появились волны? (Потому что мы подули на воду).

Всё верно. Вы, подули на море, и от этого стал двигаться воздух над водой, и именно этот воздух, заставил шевелиться воду, и получились волны.

А, давайте, как настоящие учёные попробуем по-другому проверить наше предположение о том, что именно от движения воздуха на море появились волны?

Для этого возьмите бумажный веер и помашите им себе в лицо. Что вы чувствуете? (Как дует ветер).

Вы почувствовали дуновение ветра, то есть, как движется воздух. А теперь помашите веером над вашим морем. Что произошло с морем? (Снова появились волны).

Теперь вы точно знаете, откуда появились волны? (Да. Веером мы сделали ветер и заставили двигаться воздух над морем. От этого появились волны).

Как вы считаете, этот опыт подтверждает наше свами предположение о том, что именно от движения воздуха на море появляются волны или нет? (Ответы детей).

Вы знаете, что все учёные записывают свои наблюдения, сделанные во время опытов. А мы давайте зарисуем наши опыты в своих дневниках. (Делают схематичные зарисовки опыта).

Ребята, вы проделали очень серьёзную научную работу. Надо немного отдохнуть. Давайте поиграем. Встаньте рядом со своими стульями. Повторяйте за мной слова игры и выполняйте движения вместе со мной.

Веет ветер на просторе,

Гонит волны в синем море. (руки подняты вверх, делают наклоны в сторону);

Рыбы прячутся на дно –

Плавать в бурю нелегко! (приседают и имитируют руками движения пловца)

А как стихнет буря в море,

Солнце встанет в небосклоне – (встают на носочки, руками тянутся вверх к «солнышку)

Мы в кораблике своём,

В море синем поплывём! (имитируют руками движения пловца).

Посмотрите, ребята, и на ваших столах стоят маленькие, бумажные кораблики. На них вы можете отправиться, в любое путешествие. Куда вы хотите поплыть? (Ответы детей)

А, давайте поплывём на остров, где пираты зарыли клад морского царя? (Ответы детей)

Тогда спускайте свои корабли на море и поплывём. (Дети опускают свои корабли на воду, каждый в своё «море»).

Но почему же наши корабли стоят на месте? Почему они не двигаются? Что же надо сделать, что бы они поплыли? (Дети высказывают различные предположения: подтолкнуть рукой, помахать веером, чтоб появился ветер).

А давайте попробуем тихонько подуть на корабль. Что получилось? (Кораблик поплыл).

Почему поплыл наш кораблик, что заставило его двигаться? (Мы подули на кораблик воздухом, и воздух заставил плыть кораблик)

Верно. Но кораблик плывёт очень тихо. Так мы слишком долго будем плыть к нашему острову с сокровищами. Что же делать? (Предположения детей. В ходе обсуждения, подвести детей к предположению, что нужно подуть сильнее на кораблик) .

Давайте попробуем сильнее подуть на кораблик. Что получилось? (Наш кораблик поплыл быстрее).

Как вы думаете, почему кораблик стал плыть быстрее? (Мы сильнее на него подули).

Значит чем сильнее поток воздуха, тем быстрее плывёт наш кораблик.

Вот мы и приплыли к нашему острову. Давайте поставим корабли на сушу.

Посмотрите, ребята, у меня есть пиратская карта острова. На ней крестиком обозначено место, где зарыты сокровища.

(Дети рассматривают карту и определяют то место в группе, которое на карте помечено крестиком. Находят сокровища, заранее спрятанные педагогом).

Посмотрите, а вот и мешок с сокровищами. Давайте посмотрим что там лежит. (Раскрывают мешок и достают различные ракушки, морские камушки, жемчужинки, засушенные морские звёзды и т.д.)

Нравятся вам сокровища морского царя?

Тогда предлагаю в следующий раз отправиться в путешествие по морю и заглянуть в гости к морскому царю.

Поверхность морей и океанов редко бывает спокойной: она, как правило, покрыта волнами, а о берега непрерывно бьется прибой.

Удивительное зрелище: массивное грузовое судно, которым играют гигантские штормовые волны в открытом океане, кажется не больше ореховой скорлупки. Фильмы-катастрофы изобилуют подобными картинами — волна высотой с десятиэтажный дом.

Волновые колебания поверхности моря возникают во время шторма, когда длительный порывистый ветер в сочетании с перепадами атмосферного давления формирует сложное хаотическое волновое поле.

Бегущие волны, кипящая пена прибоя

Удаляясь от циклона, вызвавшего шторм, можно наблюдать, как преображается волновая картина, как волны становятся более ровными и стройными рядами движутся друг за другом в одном направлении. Эти волны называются зыбью. Высота таких волн (то есть разница уровней между самой высокой и самой низкой точками волны) и их длина (расстояние между двумя соседними вершинами), а также скорость их распространения довольно постоянны. Два гребня может разделять расстояние до 300 м, а в высоту такие волны могут достигать 25 м. Волновые колебания от таких волн распространяются на глубину до 150 м.

Из области образования волны зыби распространяются очень далеко, даже при полном безветрии. Например, циклоны, проходящие у берегов Ньюфаундленда, вызывают волны, которые за три дня достигают Бискайского залива у западных берегов Франции — почти в 3000 км от места их образования.

При подходе к берегу, по мере уменьшения глубины, эти волны меняют свой облик. Когда волновые колебания достигают дна, движение волн замедляется, они начинают деформироваться, что завершается обрушением гребней. Такие волны с нетерпением ждут любители серфинга. Особенно эффектными они бывают в тех районах, где морское дно резко понижается у берега, например в Гвинейском заливе на западе Африки. Это место очень популярно у серфингистов всего мира.

Приливы: глобальные волны

Приливы — явление совсем другой природы. Это периодические колебания уровня моря, хорошо заметные у берегов и повторяющиеся приблизительно каждые 12,5 часа. Они вызваны гравитационным взаимодействием вод океана в основном с Луной. Период приливов определяется соотношением периодов суточного вращения Земли вокруг своей оси и вращения Луны вокруг Земли. Солнце также участвует в образовании приливов, но в меньшей степени, чем Луна. Несмотря на превосходство в массе. Солнце слишком удалено от Земли.

Суммарная величина приливов зависит, таким образом, от взаимного расположения Земли, Луны и Солнца, которое меняется в течение месяца. Когда они оказываются на одной линии (что бывает в полнолуние и новолуние), приливы достигают максимальных величин. Самые высокие приливы наблюдаются в заливе Фанди на побережье Канады: разность между максимальным и минимальным положениями уровня моря здесь составляет около 19,6 м.

Voted Thanks!

Возможно Вам будет интересно: